11--多线程探索08--GCD源码之dispatch_once

2021-07-28  本文已影响0人  修_远

概述

dispatch_once能保证任务只会被执行一次,即使同时多线程调用也是线程安全的。常用于创建单例、swizzeld method等功能。

static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
    //创建单例、method swizzled或其他任务
});

源码(老)

在10之后的源码中,隐藏了很多实现细节,不利于解读过程,可以先看一份早期的源码:

void dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func) {
    struct _dispatch_once_waiter_s * volatile *vval =
            (struct _dispatch_once_waiter_s**)val;
    struct _dispatch_once_waiter_s dow = { NULL, 0 };
    struct _dispatch_once_waiter_s *tail, *tmp;
    _dispatch_thread_semaphore_t sema;

    if (dispatch_atomic_cmpxchg(vval, NULL, &dow, acquire)) {
        _dispatch_client_callout(ctxt, func);

        dispatch_atomic_maximally_synchronizing_barrier();
        // above assumed to contain release barrier
        tmp = dispatch_atomic_xchg(vval, DISPATCH_ONCE_DONE, relaxed);
        tail = &dow;
        while (tail != tmp) {
            while (!tmp->dow_next) {
                dispatch_hardware_pause();
            }
            sema = tmp->dow_sema;
            tmp = (struct _dispatch_once_waiter_s*)tmp->dow_next;
            _dispatch_thread_semaphore_signal(sema);
        }
    } else {
        dow.dow_sema = _dispatch_get_thread_semaphore();
        tmp = *vval;
        for (;;) {
            if (tmp == DISPATCH_ONCE_DONE) {
                break;
            }
            if (dispatch_atomic_cmpxchgvw(vval, tmp, &dow, &tmp, release)) {
                dow.dow_next = tmp;
                _dispatch_thread_semaphore_wait(dow.dow_sema);
                break;
            }
        }
        _dispatch_put_thread_semaphore(dow.dow_sema);
    }
}

构造的链表,这个结构体在最新的源码中是找不到的

struct _dispatch_once_waiter_s {
  truevolatile struct _dispatch_once_waiter_s *volatile dow_next;
  true_dispatch_thread_semaphore_t dow_sema;
};

block执行的源码,这段代码后面也会分析

_dispatch_client_callout(ctxt, func);

我们都知道dispatch_once的魅力在于它可以保证代码块只执行一次,且是线程安全的

image.png

场景一:第一个线程第一次进入

  1. 刚进来时:dispatch_once_t==nilif (dispatch_atomic_cmpxchg(vval, NULL, &dow, acquire))条件成立,进入if流程;
  2. 调用:_dispatch_client_callout,执行block;
  3. 调用:dispatch_atomic_xchg(vval, DISPATCH_ONCE_DONE, relaxed);,将vval的值更新成DISPATCH_ONCE_DONE表示任务已完成;
  4. 遍历链表的节点并调用_dispatch_thread_semaphore_signal来唤醒等待中的信号量;

场景二:第二个线程进入

在第一个线程结束之前,第二个线程就已经进来了,但因为dispatch_atomic_cmpxchg(vval, NULL, &dow, acquire)里面的流程都是原子操作,原子表示最小的操作,不可分割的操作,所以其他进来的线程需要进入else流程

  1. if (dispatch_atomic_cmpxchg(vval, NULL, &dow, acquire))条件不成立,进入else流程
  2. 获取当前线程信号量:dow.dow_sema = _dispatch_get_thread_semaphore();
  3. 开始无限循环:for (;;)
  4. 阻塞线程:_dispatch_thread_semaphore_wait(dow.dow_sema);
  5. 循环退出条件:if (tmp == DISPATCH_ONCE_DONE) { break; },在场景一中有最后一步,当任务完成时,会vval的值更新成DISPATCH_ONCE_DONE,然后遍历链表中的所有节点,并并调用_dispatch_thread_semaphore_signal来唤醒等待中的信号量,这个时候,循环就会退出。
  6. 更新当前线程信号量:_dispatch_put_thread_semaphore(dow.dow_sema)

场景三:同一个线程第二次进入

当场景一完成之后,vval的值为DISPATCH_ONCE_DONE,这个时候if (dispatch_atomic_cmpxchg(vval, NULL, &dow, acquire))条件就不成立,同样会走到else流程

源码(新)

在新的源码中看不到信号量的作用了。新的源码中用了更多的宏,流程更加抽象。但主体思路变化不大。

源码实现

void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
    dispatch_once_gate_t l = (dispatch_once_gate_t)val;

#if !DISPATCH_ONCE_INLINE_FASTPATH || DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
    if (likely(v == DLOCK_ONCE_DONE)) {
        return;
    }
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    if (likely(DISPATCH_ONCE_IS_GEN(v))) {
        return _dispatch_once_mark_done_if_quiesced(l, v);
    }
#endif
#endif
    if (_dispatch_once_gate_tryenter(l)) {
        return _dispatch_once_callout(l, ctxt, func);
    }
    return _dispatch_once_wait(l);
}
  1. 先校验once状态是否为DLOCK_ONCE_DONE,如果是,则直接返回,啥也不做,否则进入第二步;
  2. 条件判断:_dispatch_once_gate_tryenter(l),其实内部实现也是跟旧的源码差别不大:os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED, (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
  3. 条件通过则调用:_dispatch_once_callout(l, ctxt, func);,这个流程跟旧源码的if流程一模一样。先调用block,然后广播信号量状态改变的消息;
  4. 其他条件不通过时,则进入:_dispatch_once_wait(l);流程,这个流程和else流程一致;

源码定义

为了更加清晰的认识新的源码,将宏定义展开、函数嵌套展开之后看过程。整体的流程仍然是完全一致,只是将信号量改成了iOS10之后的unfair_lock

void
dispatch_once_f(dispatch_once_t *val, void *ctxt, dispatch_function_t func)
{
    dispatch_once_gate_t l = (dispatch_once_gate_t)val;

    uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
    if (likely(v == DLOCK_ONCE_DONE)) {
        return;
    }
    if (os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
            (uintptr_t)_dispatch_lock_value_for_self(), relaxed)) {
         //_dispatch_once_callout(l, ctxt, func);
         func(ctxt);
         dispatch_lock value_self = _dispatch_lock_value_for_self();
         uintptr_t v;
         v = _dispatch_once_mark_done(l);
         if (likely((dispatch_lock)v == value_self)) return;
         _dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
         return;
    }
    
    // _dispatch_once_wait
    dispatch_lock self = _dispatch_lock_value_for_self();
    uintptr_t old_v, new_v;
    uint32_t timeout = 1;

    for (;;) {
        os_atomic_rmw_loop(&dgo->dgo_once, old_v, new_v, relaxed, {
            if (likely(old_v == DLOCK_ONCE_DONE)) {
                os_atomic_rmw_loop_give_up(return);
            }
            new_v = old_v | (uintptr_t)DLOCK_WAITERS_BIT;
            if (new_v == old_v) os_atomic_rmw_loop_give_up(break);
        });
        if (unlikely(_dispatch_lock_is_locked_by((dispatch_lock)old_v, self))) {
            DISPATCH_CLIENT_CRASH(0, "trying to lock recursively");
        }
        _dispatch_unfair_lock_wait(lock, (dispatch_lock)new_v, 0,
                DLOCK_LOCK_NONE);
        (void)timeout;
    }
}

定义

dispatch_once_t

typedef intptr_t dispatch_once_t;
static dispatch_once_t _dispatch_build_pred;

dispatch_once_gate_s, *dispatch_once_gate_t

typedef struct dispatch_once_gate_s {
    union {
        dispatch_gate_s dgo_gate;
        uintptr_t dgo_once;
    };
} dispatch_once_gate_s, *dispatch_once_gate_t;

宽度 acquire = __mo_acquire = 2

uintptr_t v = os_atomic_load(&l->dgo_once, acquire);
    rename everything to the wide variants
    重命名为指定宽度的变量 只需要考虑两位即可
    enum class memory_order : __memory_order_underlying_t {
      relaxed = __mo_relaxed,
      consume = __mo_consume,
      acquire = __mo_acquire,
      release = __mo_release,
      acq_rel = __mo_acq_rel,
      seq_cst = __mo_seq_cst
    };
    enum __legacy_memory_order {
        __mo_relaxed,
        __mo_consume,
        __mo_acquire,
        __mo_release,
        __mo_acq_rel,
        __mo_seq_cst
    };

宏定义

DLOCK_GATE_UNLOCKED
    #define DLOCK_GATE_UNLOCKED ((dispatch_lock)0)
        0
DLOCK_ONCE_UNLOCKED
    #define DLOCK_ONCE_UNLOCKED ((uintptr_t)0)
        0x00
        0b0000 0000
DLOCK_ONCE_DONE
    #define DLOCK_ONCE_DONE     (~(uintptr_t)0)
        0xff
        0b1111 1111
DLOCK_FAILED_TRYLOCK_BIT
    #define DLOCK_FAILED_TRYLOCK_BIT ((dispatch_lock)0x00000002)
        0x02
        0b0000 0010
DISPATCH_NOESCAPE
    #define DISPATCH_NOESCAPE __attribute__((__noescape__))
DISPATCH_EXPECT
    #define DISPATCH_EXPECT(x, v) __builtin_expect((x), (v))

函数定义

DISPATCH_ONCE_MAKE_GEN(gen)
    (((gen) << 2) + DLOCK_FAILED_TRYLOCK_BIT)
        左移两位
        + 0b0000 0010
DISPATCH_ONCE_IS_GEN(gen)
    (((gen) & 3) == DLOCK_FAILED_TRYLOCK_BIT)
        & 0b0000 0011
        比较 0b0000 0010
_dispatch_once_gate_tryenter
    static inline bool
    _dispatch_once_gate_tryenter(dispatch_once_gate_t l)
    {
        return os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
                (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
    }
        l->dgo_once == 0

atomic.h

os_atomic_cmpxchg(&l->dgo_once, DLOCK_ONCE_UNLOCKED,
            (uintptr_t)_dispatch_lock_value_for_self(), relaxed);
    比较+交换
    l->dgo_once 与 DLOCK_ONCE_UNLOCKED 比较
    将 _dispatch_lock_value_for_self() 赋值给 l->dgo_once

_dispatch_once_callout流程

_dispatch_client_callout(ctxt, func);
    return f(ctxt);
    调用block

_dispatch_once_gate_broadcast(l);

_dispatch_once_gate_broadcast(dispatch_once_gate_t l)
{
    dispatch_lock value_self = _dispatch_lock_value_for_self();
    uintptr_t v;
#if DISPATCH_ONCE_USE_QUIESCENT_COUNTER
    v = _dispatch_once_mark_quiescing(l);
#else
    v = _dispatch_once_mark_done(l);
#endif
    if (likely((dispatch_lock)v == value_self)) return;
    _dispatch_gate_broadcast_slow(&l->dgo_gate, (dispatch_lock)v);
}

最后两位结果为:最后两位0b10

static inline uintptr_t
_dispatch_once_mark_quiescing(dispatch_once_gate_t dgo)
{
    return os_atomic_xchg(&dgo->dgo_once, _dispatch_once_generation(), release);
}
    static inline uintptr_t
    _dispatch_once_generation(void)
    {
        uintptr_t value;
        value = *(volatile uintptr_t *)_COMM_PAGE_CPU_QUIESCENT_COUNTER;
        return (uintptr_t)DISPATCH_ONCE_MAKE_GEN(value);
    }

最后两位结果为:0b11

static inline uintptr_t
_dispatch_once_mark_done(dispatch_once_gate_t dgo)
{
    return os_atomic_xchg(&dgo->dgo_once, DLOCK_ONCE_DONE, release);
}

深入浅出 GCD 之 dispatch_once
iOS多线程:GCD源码分析<三>dispatch_once
atomic_cmpxchg

上一篇下一篇

猜你喜欢

热点阅读