书房就是我的全世界【头号玩家公会】数据科学家

如何应用 cvxopt 中的 solvers.lp

2020-03-22  本文已影响0人  不会停的蜗牛

我们在求解石头剪子布的纳什均衡问题时会用到 cvxopt 里面的这个函数:solvers.lp(c=c, G=G, h=h, A=A, b=b)。

今天就先在这里介绍一下这个怎么用,下一次分析如何构造石头剪子布的方程。

这个函数是用来求解双重线性约束问题的:

其中 minimize 部分中约束条件的第一和第三条可以推导出:Gx <= h,而这种形式也是我们在日常应用中会遇到的最常见的形式,有了这种不等关系,我们就可以将遇到的约束问题,对号入座找到上图中所示的 c,G,h,A,b 即可。

例如我们有这样一个例子:

有了这几个系数后,就可以调用 solvers.lp 进行求解:

>>> from cvxopt import matrix, solvers
>>> c = matrix([-4., -5.])
>>> G = matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])
>>> sol = solvers.lp(c, G, h)
>>> print(sol['x'])
[ 1.00e+00]
[ 1.00e+00]

所以下一步就是要看石头剪子布问题中的约束方程是什么了。


参考文献:
https://cvxopt.org/userguide/coneprog.html
https://blog.csdn.net/QW_sunny/article/details/79793843

上一篇下一篇

猜你喜欢

热点阅读