如切如磋,如琢如磨简友广场我的大学

《线性代数应该这样学》课内验证3-线性映射

2021-09-24  本文已影响0人  Raow1

CHAPTER 3 Linear Maps

  1. Make sure you verify that each of the functions defined below is indeed a linear map:
    • zero: 0 \in \mathcal{L}(V,W) is defined by 0v=0.
    • identity: I \in \mathcal{L}(V,V) is defined by Iv=v.
    • multiplication by x^2: T \in \mathcal{L}(\mathcal{P}(\mathbb{R}),\mathcal{P}(\mathbb{R})) is defined by (Tp)(x)=x^2p(x) for x \in \mathbb{R}.
    • backwar shift: T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) is defined by T(x_1,x_2,x_3,\cdots)=(x_2,x_3,\cdots).
    • from \mathbb{F}^{n} to \mathbb{F}^{m} : T \in \mathcal{L}(\mathbb{F}^{n}, \mathbb{F}^{m}) is defined by T(x_1, \cdots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n).

Proof

  1. You should verify that ST is indeed a linear map from U to W whenever T \in \mathcal{L}(U,V) and S \in \mathcal{L}(V,W).

Proof Additivity: for all u,v \in U, (ST)(u+v)=S(T(u+v))=S(T(u)+T(v))=S(T(u))+S(T(v))=(ST)(u)+(ST)(v)

homogeneity: for all \lambda \in \mathbb{F} and all u\in U, (ST)(\lambda u)=S(T(\lambda u))=S(\lambda Tu)=\lambda S(Tu)=\lambda (ST)(u)

  1. The reader should verify that \pi is indeed a linear map.

Proof Additivity: for all v,w \in V, \pi (v+w)=(v+w)+U=(v+U)+(w+U)=\pi(v)+\pi(w)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \pi (\lambda v)=\lambda v+U=\lambda (v+U)=\lambda \pi(v)

  1. The routine verification that \tilde{T} is linear is left to the reader.

Proof Additivity: for all u,v \in V, \tilde{T}(u+\text{null }T +v+\text{null }T)=T(u+v)=T(u)+T(v)=\tilde{T}(u+\text{null }T)+\tilde{T}(v+\text{null }T)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \tilde{T}(\lambda v+\text{null }T)=T(\lambda v)=\lambda T(v)=\lambda \tilde{T}(v+\text{null }T)

  1. You should construct the proof outlined in the paragraph above, even though a slicker proof is presented here. Suppose V is finite-dimensional and U is a subspace of V. Then \dim U + \dim U^0 =\dim V.

Proof Let u_1,\cdots,u_m be a basis of U; thus \dim U =m. The linearly independent list u_1,\cdots,u_m can be extended to a basis u_1,\cdots,u_m,\cdots, u_n of V.

Thus \dim V=n. To complete the proof, we need only show that U^0 is finite-dimensional and \dim U^0=n-m.

Suppose \varphi_1,\cdots , \varphi_m,\cdots,\varphi_n is a basis of V', \varphi \in U^0. We can write
\varphi =c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n
Because u_1 \in U and \varphi \in U^0, we have
0=\varphi(u_1)=(c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n)(u_1)=c_1
Similarly, c_2,\cdots,c_m all are 0. Hence \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n.

Thus \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n), which shows that U^0 \subset \text{span}(\varphi_{m+1},\cdots,\varphi_n).

Suppose \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n). Then there exist c_{m+1},\cdots,c_n such that \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n. If (a_1,\cdots,a_m,0,\cdots,0) \in U, then
\varphi(a_1,\cdots,a_m,0,\cdots,0)=0
Thus \varphi \in U^0, which shows that \text{span}(\varphi_{m+1},\cdots,\varphi_n) \subset U^0.

Hence U^0=\text{span}(\varphi_{m+1},\cdots,\varphi_n). We also know that \varphi_{1},\cdots,\varphi_n is a basis of V'. Therefore \varphi_{m+1},\cdots,\varphi_{n} is linearly independent.

Hence it can be a basis of U^0. Thus \dim U^0=n-m.

上一篇下一篇

猜你喜欢

热点阅读