Java并发编程的艺术第二章笔记

2020-12-22  本文已影响0人  逍遥白亦

第二章 Java并发机制的底层实现原理

[toc]

Volatile

定义

Java语言规范第3版中对volatile的定义如下:Java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致地更新,线程应该确保通过排他锁单独获得这个变量。Java语言 提供了volatile,在某些情况下比锁要更加方便。如果一个字段被声明成volatile,Java线程内存模型确保所有线程看到这个变量的值是一致的。

CPU的相关术语

术语 术语描述
内存屏障 用一组处理器指令,用于实现对内存操作的顺序限制
缓冲行 缓存中可以分配的最小存储单位。处理器填写缓存线时会加载整个缓存线,需要使用多个主内存读周期
原子操作 不可中断的一个或一系列操作
缓存行填充 当处理器识别到从内存中读取操作数是可缓存的,处理器读取整个缓存行到适当的缓存(L1、L2、L3的或所有)
缓存命中 如果进行高速缓存行填充操作的内存位置仍然是下次处理器访问的地址时,处理器从缓存中读取操作数,而不是从内存读取
写命中 当处理器将操作数写回到一个内存缓存的区域时,它首先会检查这个缓存的内存地址是否在缓存行中,如果存在一个有效的缓存行,则处理器将这个操作数写回到缓存,而不是写回到内存,这个操作被称为写命中。
写缺失 一个有效的缓存行被写入到不存在的内存区域。

为什么要使用Volatile

如果volatile变量修饰符使用恰当的话,它比synchronized的使用和执行成本更低,因为它不会引起线程上下文的切换和调度。

原理

volatile是如何来保证可见性的呢?让我们在X86处理器下通过工具获取JIT编译器生成的汇编指令来查看对volatile进行写操作时,CPU会做什么事情。

Java代码如下

instance = new Singleton(); // instance是volatile变量

转变成汇编代码,如下。

0x01a3de1d: movb $0×0,0×1104800(%esi);
0x01a3de24: lock addl $0×0,(%esp);

有volatile变量修饰的共享变量进行写操作的时候会多出第二行汇编代码,Lock前缀的指令在多核处理器下会引发了两件事情

为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完不知道何时会写到内存。如果对声明了volatile的变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是,就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。所以,在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当 处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。

下面来具体讲解volatile的两条实现原则。

1)Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的LOCK#信号。在多处理器环境中,LOCK#信号确保在声言该信号期间,处理器可以 独占任何共享内存[2]。但是,在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销的比较大。对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和目前的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据。

2)一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处 理器使用MESI(修改、独占、共享、无效)控制协议去维护内部缓存和其他处理器缓存的一致 性。在多核处理器系统中进行操作的时候,IA-32和Intel 64处理器能嗅探其他处理器访问系统 内存和它们的内部缓存。处理器使用嗅探技术保证它的内部缓存、系统内存和其他处理器的缓存的数据在总线上保持一致。例如,在Pentium和P6 family处理器中,如果通过嗅探一个处理 器来检测其他处理器打算写内存地址,而这个地址当前处于共享状态,那么正在嗅探的处理 器将使它的缓存行无效,在下次访问相同内存地址时,强制执行缓存行填充。

优化

著名的Java并发编程大师Doug lea在JDK7的并发包里新增一个队列集合类Linked- TransferQueue,它在使用volatile变量时,用一种追加字节的方式来优化队列出队和入队的性 能。LinkedTransferQueue的代码如下。

/** 队列中的头部节点 */ 
private transient f?inal PaddedAtomicReference<QNode> head; 
/** 队列中的尾部节点 */ 
private transient f?inal PaddedAtomicReference<QNode> tail; 
static f?inal class PaddedAtomicReference <T> extends AtomicReference T> { 
    // 使用很多4个字节的引用追加到64个字节 
    Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe; 
    PaddedAtomicReference(T r) {
    super(r); 
    } 
}
public class AtomicReference <V> implements java.io.Serializable { 
    private volatile V value; 
    // 省略其他代码
}

AtomicReference只做了一件事情,就是将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量(共占60个字节),再加上父类的value变量,一共64个字节。

为什么追加64字节能够提高并发编程的效率呢?

因为对于英特尔酷睿i7、酷睿、Atom和 NetBurst,以及Core Solo和Pentium M处理器的L1、L2或L3缓存的高速缓存行是64个字节宽,不 支持部分填充缓存行,这意味着,如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头、尾节点,当一 个处理器试图修改头节点时,会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作则需要不停修改头
节点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头节点和尾节点加载到同一个缓存 行,使头、尾节点在修改时不会互相锁定。

那么是不是在使用volatile变量时都应该追加到64字节呢?

不是的。在两种场景下不应该使用这种方式。

JDK7之后已经见不到追加字节的代码了,因为JVM自己做了优化,会自动填充。

synchronized

先来看下利用synchronized实现同步的基础:Java中的每一个对象都可以作为锁。具体表现为以下3种形式。

底层实现

synchronized底层是是通过monitor对象,对象有自己的对象头,存储了很多信息,其中一个信息标示是被哪个线程持有。

同步代码块:monitorenter和monitorexit指令实现的

同步方法:方法修饰符上的ACC_SYNCHRONIZED实现

锁的分类与升级

锁一共有4种状态,级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级,意味着偏 向锁升级成轻量级锁后不能降级成偏向锁。

无锁

无锁是指没有对资源进行锁定,所有的线程都能访问并修改同一个资源,但同时只有一个线程能修改成功。

偏向锁

HotSpot的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下MarkWord中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。

偏向锁的撤销

偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时, 持有偏向锁的线程才会释放锁。

关闭偏向锁

偏向锁在Java 6和Java 7里是默认启用的,但是它在应用程序启动几秒钟之后才激活,如有必要可以使用JVM参数来关闭延迟:-XX:BiasedLockingStartupDelay=0。如果你确定应用程 序里所有的锁通常情况下处于竞争状态,可以通过JVM参数关闭偏向锁:-XX:- UseBiasedLocking=false,那么程序默认会进入轻量级锁状态。

偏向锁初始化过程
image

轻量级锁

轻量级锁加锁

线程在执行同步块之前,JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的MarkWord复制到锁记录中,官方称为DisplacedMarkWord。然后线程尝试使用 CAS将对象头中的Mark Word替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。

轻量级锁解锁

轻量级解锁时,会使用原子的CAS操作将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。

锁膨胀
image

因为自旋会消耗CPU,为了避免无用的自旋(比如获得锁的线程被阻塞住了),一旦锁升级成重量级锁,就不会再恢复到轻量级锁状态。当锁处于这个状态下,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程,被唤醒的线程就会进行新一轮 的夺锁之争。

重量级锁

即当有其他线程占用锁时,当前线程会进入阻塞状态

对象头

Java对象头里的Mark Word里默认存储对象的HashCode、分代年龄和锁标记位。

具体应用

原子操作的实现原理

定义

原子:不能被进一步分割的最小粒子

原子操作:不可被中断的一个或一系列操作

术语

image

处理器如何实现原子性

总线加锁

使用处理器提供的一个LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该处理器可以独占共享内存。

缓存加锁

只对单个缓存行的数据加锁。一个处理器的缓存值通过总线回写到内存会导致其他处理器相应的缓存失效:若干个CPU核心通过ringbus连到一起。每个核心都维护自己的Cache的状态。如果对于同一份内存数据在多个核里都有cache,则状态都为S(shared)。一旦有一核心改了这个数据(状态变成了M),其他核心就能瞬间通过ringbus感知到这个修改,从而把自己的cache状态变成I(Invalid),并且从标记为M的cache中读过来。同时,这个数据会被原子的写回到主存。最终,cache的状态又会变为S。

Java实现原子性

CAS

算法

Compare and Swap,即比较再交换。CAS是一种无锁算法,CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则什么都不做。执行CAS操作,但如果期望值与当前线程不符,则说明该值已被其他线程修改,此时不执行更新操作,但可以选择重新读取该变量再尝试再次修改该变量,也可以放弃操作

底层实现

用处理器提供的CMAPXCHG指令实现

缺陷

在Java并发包中有一些并发框架也使用了自旋CAS的方式来实现原子操作,比如LinkedTransferQueue类的Xfer方法。CAS虽然很高效地解决了原子操作,但是CAS仍然存在三 大问题。ABA问题,循环时间长开销大,以及只能保证一个共享变量的原子操作。

ABA

问题描述:线程t1将它的值从A变为B,再从B变为A。同时有线程t2要将值从A变为C。但CAS检查的时候会发现没有改变,但是实质上它已经发生了改变 。可能会造成数据的缺失。

解决:CAS还是类似于乐观锁,同数据乐观锁的方式给它加一个版本号或者时间戳,如AtomicStampedReference

自旋消耗资源

问题描述:多个线程争夺同一个资源时,如果自旋一直不成功,将会一直占用CPU。

解决:破坏掉for死循环,当超过一定时间或者一定次数时,return退出。JDK8新增的LongAddr,和ConcurrentHashMap类似的方法。当多个线程竞争时,将粒度变小,将一个变量拆分为多个变量,达到多个线程访问多个资源的效果,最后再调用sum把它合起来。

多变量共享一致性问题

问题描述:当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性

解决:

锁机制保证了只有获得锁的线程才能够操作锁定的内存区域。JVM内部实现了很多种锁机制,有偏向锁、轻量级锁和互斥锁。有意思的是除了偏向锁,JVM实现锁的方式都用了循环CAS,即当一个线程想进入同步块的时候使用循环CAS的方式来获取锁,当它退出同步块的时候使用循环CAS释放锁。

上一篇 下一篇

猜你喜欢

热点阅读