Visual Studio 2017 + CUDA 9.2 +

2019-03-08  本文已影响0人  _酒酿芋圆

1.安装 Visual Studio 2017

勾选适用于桌面的 VC++ 2015.3 v14.00(v140) 工具集

2.安装 CUDA 9.2

先安装 Base Installer



再安装 Patch 1 (Released Aug 16, 2018)



设置环境变量
CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2
CUDA_PATH_V9_2 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64 
CUDA_BIN_PATH = %CUDA_PATH%\bin 
CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.2 
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64 
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64 

检查环境变量 set cuda


验证安装,进入 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\extras\demo_suite 目录,执行 deviceQuery.exe
执行 bandwidthTest.exe
Result = PASS 说明安装成功

3.安装 cuDNN 7.5, for CUDA 9.2

解压 cudnn-9.2-windows10-x64-v7.5.0.56.zip,将 cudnn-9.2-windows10-x64-v7.5.0.56\cuda\bin\cudnn64_7.dll 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\bin
cudnn-9.2-windows10-x64-v7.5.0.56\cuda\include\cudnn.h 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include
cudnn-9.2-windows10-x64-v7.5.0.56\cuda\lib\x64\cudnn.lib 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\lib\x64
检查环境变量

Variable Name: CUDA_PATH 
Variable Value: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2

4.安装 OpenCV 3.4.5

下载完成后解压

5.使用 CMake 编译 OpenCV


勾选 WITH_CUDA,否则使用 GPU 模块时会出现问题

重新生成解决方案

选择仅生成 INSTALL
添加环境变量 D:\Programming\OpenCV\opencv\build\install\x64\vc15\bin

6.测试 CUDA

进入 C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\bin\Hostx64\x64
执行 cl.exe


看到 cl.exe 的版本为 19.16.27027.1
进入 C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\bin\Hostx64\x64>cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include\crt 查看 host_config.h,发现第 131 行为:
1913 修改为 1916

7.配置 Visual Studio

新建空项目,配置项目属性:
属性 - 配置属性 - VC++目录 - 包含目录中添加路径:
D:\Programming\OpenCV\opencv\build\install\include
D:\Programming\OpenCV\opencv\build\install\include\opencv
D:\Programming\OpenCV\opencv\build\install\include\opencv2
属性 - 配置属性 - VC++目录 - 库目录中添加路径:
D:\Programming\OpenCV\opencv\build\install\x64\vc15\lib
属性 - 配置属性 - 链接器 - 输入 - 附加依赖项中添加:
opencv_calib3d345d.lib opencv_core345d.lib opencv_cudaarithm345d.lib opencv_cudabgsegm345d.lib opencv_cudacodec345d.lib opencv_cudafeatures2d345d.lib opencv_cudafilters345d.lib opencv_cudaimgproc345d.lib opencv_cudalegacy345d.lib opencv_cudaobjdetect345d.lib opencv_cudaoptflow345d.lib opencv_cudastereo345d.lib opencv_cudawarping345d.lib opencv_cudev345d.lib opencv_dnn345d.lib opencv_features2d345d.lib opencv_flann345d.lib opencv_highgui345d.lib opencv_imgcodecs345d.lib opencv_imgproc345d.lib opencv_ml345d.lib opencv_objdetect345d.lib opencv_photo345d.lib opencv_shape345d.lib opencv_stitching345d.lib opencv_superres345d.lib opencv_video345d.lib opencv_videoio345d.lib opencv_videostab345d.lib
右键项目 - 生成依赖项 - 生成自定义 - CUDA 9.2(.targets, .props)


属性 - 配置属性 - VC++目录 - 包含目录中添加路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\include
属性 - 配置属性 - 链接器 - 常规 - 附加库目录中添加路径:
$(CUDA_PATH_V9_2)\lib\$(Platform)
属性 - 配置属性 - 链接器 - 输入 - 附加依赖项中添加库:
cublas.lib;cublas_device.lib;cuda.lib;cudadevrt.lib;cudart.lib;cudart_static.lib;cufft.lib;cufftw.lib;curand.lib;cusolver.lib;cusparse.lib;nppc.lib;nppial.lib;nppicc.lib;nppicom.lib;nppidei.lib;nppif.lib;nppig.lib;nppim.lib;nppist.lib;nppisu.lib;nppitc.lib;npps.lib;nvblas.lib;nvcuvid.lib;nvgraph.lib;nvml.lib;nvrtc.lib;OpenCL.lib;
设置完成后右键源文件 - 添加 - 新建项 - CUDA C/C++ File

7.导出模板

8.执行程序

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/cuda.hpp>

using namespace std;
using namespace cv;
using namespace cuda;


int main() {
    DeviceInfo deviceInfo;
    bool isDeviceOK = deviceInfo.isCompatible();

    cout << "Is GPU OK:" << isDeviceOK << endl;

    system("pause");
    return 0;
}

参考链接:
https://blog.csdn.net/caihaocong/article/details/80360410
https://blog.csdn.net/u013165921/article/details/77891913
https://www.cnblogs.com/wayne793377164/p/8185404.html
https://blog.csdn.net/wolffytom/article/details/49976487
https://blog.csdn.net/u010763864/article/details/81632469

上一篇 下一篇

猜你喜欢

热点阅读