机器学习

DL4J中文文档/开始/速查表-2

2018-10-21  本文已影响77人  hello风一样的男子

正则化

L1/L2 正则化

L1和L2正则化可以容易地通过配置:.l1(0.1).l2(0.2)添加到网络中。注意, .regularization(true) 必须在0.9.1上启用(这个选项在0.9.1发布后被删除)。
L1和L2正则化仅适用于权重参数。也就是说,.l1 和 .l2 不会影响偏置参数-这些可以使用.l1Bias(0.1).l2Bias(0.2)实现被正则化。

Dropout(丢弃)

所有的丢弃类型公在训练时应用。它们不在测试时应用。

注意(从当前主干开始,但不是0.9.1),丢弃参数也可以根据学习率调度部分中提到的任何调度类来指定。

权重噪声

根据丢弃,丢弃连接/权重噪声只适用于训练时间。

约束

约束是在每次迭代结束时(在参数更新发生之后)放置在模型的参数上的确定性限制。它们可以被认为是正则化的一种类型。

数据类

迭代器

DataSetIterator是DL4J用于对小批量数据进行迭代的抽象,用于训练。DataSetIterator返回DataSet对象,这些对象是小批量,并支持最多1个输入和1个输出数组(INDArray)。
MultiDataSetIterator类似于DataSetIterator,但是返回MultiDataSet对象,该对象可以具有网络所需的多个输入和多个输出数组。

内置迭代器 (DL4J-提供数据)

这些迭代器按需要下载它们的数据。它们返回的实际数据集不是可定制的。

迭代器-用户提供的数据

此子章节的迭代器与用户提供的数据一起使用。

迭代器 - 适配器与实用迭代器

数据归一化

ND4J提供了用于执行数据归一化的多个类。这些实现为数据集预处理器。归一化的基本模式:

  1. 创建你的 (非归一化) DataSetIterator 或 MultiDataSetIterator: DataSetIterator myTrainData = ...
  2. 创建你想使用的归一化器: NormalizerMinMaxScaler normalizer = new NormalizerMinMaxScaler();
  3. 拟合归一化器: normalizer.fit(myTrainData)
  4. 在迭代器上设置归一化器/预处理器 : myTrainData.setPreProcessor(normalizer); 最终结果:来自DataSetIterator的数据现在将被归一化。

通常你应该只在训练数据上拟合,并且与仅在训练数据上拟合的相同的/单一的归一化器一起执行 trainData.setPreProcessor(normalizer)testData.setPreProcessor(normalizer)

注意,在适当的情况下(NormalizerStandard.,NormalizerMinMaxScaler),诸如平均值/标准偏差/最小值/最小值的统计数据,跨时间(对于时间序列)和跨图像x/y位置(但是对于图像数据不是深度/通道)共享。

数据归一化示例: 链接

可用的归一化器: DataSet / DataSetIterator

可用的归一化器: MultiDataSet / MultiDataSetIterator

迁移学习

DL4j具有用于执行迁移学习的类/实用程序——即,采用现有网络,并修改一些层(可选地冻结其他层,以便它们的参数不改变)。例如,可以在ImageNet上训练图像分类器,然后应用于新的/不同的数据集。多层网络和计算图都可以与迁移学习一起使用——通常从模型动物园的预训练模型开始(参见下一节),虽然可以单独使用任何多层网络/计算图。

链接: 迁移学习示例

迁移学习的主要类别是TransferLearning。该类具有可用于添加/删除层、冻结层等的构建器模式。FineTuneConfiguration可用于指定非冻结层的学习速率和其他设置。

训练好的模型库 - Model Zoo

DL4J提供了一个“model zoo”——一组预训练模型,可以下载和使用(例如,用于图像分类),或者经常用于迁移学习。

链接: Deeplearning4j Model Zoo

DL4J 的 model zoo中可用的模型有:

*: Keras 已训练好的模型 (不是 DL4J 提供) 或许也可以导入, 使用 DL4J的 Keras 模型导入功能。

速查表代码片段

Eclipse DL4J库提供了很多功能,我们将这个速查表放在一起,以帮助用户组装神经网络并更快地使用张量。

神经网络

用于多层网络和计算图的通用参数和层的配置代码。完整的API见MultiLayerNetworkComputationGraph

序列网络

大多数网络配置可以使用多层网络类,如果它们是序列的和简单的。

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(1234)
    // 如下的参数会被复制到网络中的每一层
    // 对于像 dropOut() 或 activation()这样的参数你应该每一层都设置
    // 只指定你需要的参数
    .updater(new AdaGrad())
    .activation(Activation.RELU)
    .dropOut(0.8)
    .l1(0.001)
    .l2(1e-4)
    .weightInit(WeightInit.XAVIER)
    .weightInit(Distribution.TruncatedNormalDistribution)
    .cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
    .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
    .gradientNormalizationThreshold(1e-3)
    .list()
    // 网络中的层,按顺序添加
    // 每层设置的参数覆盖上面设置的参数
    .layer(new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
            .weightInit(WeightInit.XAVIER)
            .build())
    .layer(new ActivationLayer(Activation.RELU))
    .layer(new ConvolutionLayer.Builder(1,1)
            .nIn(1024)
            .nOut(2048)
            .stride(1,1)
            .convolutionMode(ConvolutionMode.Same)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.IDENTITY)
            .build())
    .layer(new GravesLSTM.Builder()
            .activation(Activation.TANH)
            .nIn(inputNum)
            .nOut(100)
            .build())
    .layer(new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.SOFTMAX)
            .nIn(numHiddenNodes).nOut(numOutputs).build())
    .pretrain(false).backprop(true)
    .build();

MultiLayerNetwork neuralNetwork = new MultiLayerNetwork(conf);

image.gif

复杂网络

具有复杂图和“分支”的网络需要使用计算图。

ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder()
    .seed(seed)
   // 如下的参数会被复制到网络中的每一层
    // 对于像 dropOut() 或 activation()这样的参数你应该每一层都设置
    // 只指定你需要的参数  
    .activation(Activation.IDENTITY)
    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
    .updater(updater)
    .weightInit(WeightInit.RELU)
    .l2(5e-5)
    .miniBatch(true)
    .cacheMode(cacheMode)
    .trainingWorkspaceMode(workspaceMode)
    .inferenceWorkspaceMode(workspaceMode)
    .cudnnAlgoMode(cudnnAlgoMode)
    .convolutionMode(ConvolutionMode.Same)
    .graphBuilder()
    // 网络中的层,按顺序添加
    // 每层设置的参数覆盖上面设置的参数
    // 注意你必须为每一层命名并手动指定它的输入
    .addInputs("input1")
    .addLayer("stem-cnn1", new ConvolutionLayer.Builder(new int[] {7, 7}, new int[] {2, 2}, new int[] {3, 3})
        .nIn(inputShape[0])
        .nOut(64)
        .cudnnAlgoMode(ConvolutionLayer.AlgoMode.NO_WORKSPACE)
        .build(),"input1")
    .addLayer("stem-batch1", new BatchNormalization.Builder(false)
        .nIn(64)
        .nOut(64)
        .build(), "stem-cnn1")
    .addLayer("stem-activation1", new ActivationLayer.Builder()
        .activation(Activation.RELU)
        .build(), "stem-batch1")
    .addLayer("lossLayer", new CenterLossOutputLayer.Builder()
        .lossFunction(LossFunctions.LossFunction.SQUARED_LOSS)
        .activation(Activation.SOFTMAX).nOut(numClasses).lambda(1e-4).alpha(0.9)
        .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer).build(),
        "stem-activation1")
    .setOutputs("lossLayer")
    .setInputTypes(InputType.convolutional(224, 224, 3))
    .backprop(true).pretrain(false).build();

ComputationGraph neuralNetwork = new ComputationGraph(graph);

image.gif

训练

下面的代码片段创建一个基本的管道,从磁盘加载图像,应用随机变换,并将它们拟合到神经网络。它还设置了UI实例,以便你可以可视化进度,并使用早期停止来提前终止训练。你可以为许多不同的用例修改此管道。

ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
File mainPath = new File(System.getProperty("user.dir"), "dl4j-examples/src/main/resources/animals/");
FileSplit fileSplit = new FileSplit(mainPath, NativeImageLoader.ALLOWED_FORMATS, rng);
int numExamples = Math.toIntExact(fileSplit.length());
int numLabels = fileSplit.getRootDir().listFiles(File::isDirectory).length; // 在仅在你的根目录是干净的:只有标签子目录的时候才会起作用。
BalancedPathFilter pathFilter = new BalancedPathFilter(rng, labelMaker, numExamples, numLabels, maxPathsPerLabel);

InputSplit[] inputSplit = fileSplit.sample(pathFilter, splitTrainTest, 1 - splitTrainTest);
InputSplit trainData = inputSplit[0];
InputSplit testData = inputSplit[1];

boolean shuffle = false;
ImageTransform flipTransform1 = new FlipImageTransform(rng);
ImageTransform flipTransform2 = new FlipImageTransform(new Random(123));
ImageTransform warpTransform = new WarpImageTransform(rng, 42);
List<Pair<ImageTransform,Double>> pipeline = Arrays.asList(
    new Pair<>(flipTransform1,0.9),
    new Pair<>(flipTransform2,0.8),
    new Pair<>(warpTransform,0.5));

ImageTransform transform = new PipelineImageTransform(pipeline,shuffle);
DataNormalization scaler = new ImagePreProcessingScaler(0, 1);

// 训练数据集
ImageRecordReader recordReaderTrain = new ImageRecordReader(height, width, channels, labelMaker);
recordReader.initialize(trainData, null);
DataSetIterator trainingIterator = new RecordReaderDataSetIterator(recordReaderTrain, batchSize, 1, numLabels);

//测试数据集
ImageRecordReader recordReaderTest = new ImageRecordReader(height, width, channels, labelMaker);
recordReader.initialize(testData, null);
DataSetIterator testingIterator = new RecordReaderDataSetIterator(recordReaderTest, batchSize, 1, numLabels);

//早停配置,模型保存器,还有训练器
EarlyStoppingModelSaver saver = new LocalFileModelSaver(System.getProperty("user.dir"));
EarlyStoppingConfiguration esConf = new EarlyStoppingConfiguration.Builder()
    .epochTerminationConditions(new MaxEpochsTerminationCondition(50)) //Max of 50 epochs
    .evaluateEveryNEpochs(1)
    .iterationTerminationConditions(new MaxTimeIterationTerminationCondition(20, TimeUnit.MINUTES)) //Max of 20 minutes
    .scoreCalculator(new DataSetLossCalculator(testingIterator, true))     //Calculate test set score
    .modelSaver(saver)
    .build();

EarlyStoppingTrainer trainer = new EarlyStoppingTrainer(esConf, neuralNetwork, trainingIterator);

// 开始训练
trainer.fit();

image.gif

复杂的转换

DataVec附带了一个便利的转换进程类,允许更复杂的数据冲突和数据转换。它与2D和序列数据集都能很好地工作。

Schema schema = new Schema.Builder()
    .addColumnsDouble("Sepal length", "Sepal width", "Petal length", "Petal width")
    .addColumnCategorical("Species", "Iris-setosa", "Iris-versicolor", "Iris-virginica")
    .build();

TransformProcess tp = new TransformProcess.Builder(schema)
    .categoricalToInteger("Species")
    .build();

// 在spark上进行转换
JavaRDD<List<Writable>> processedData = SparkTransformExecutor.execute(parsedInputData, tp);

image.gif

在创建更复杂的转换之前,我们建议先查看一下 DataVec examples

评估

MultiLayerNetwork和ComputationGraph都带有内置的eval()方法,允许你传递数据集迭代器并返回评估结果。

// 返回具有准确度、精确度、召回和其他类别的统计信息
Evaluation eval = neuralNetwork.eval(testIterator);
System.out.println(eval.accuracy());
System.out.println(eval.precision());
System.out.println(eval.recall());

// 在多分类数据集上用于曲线下面积的ROC(非二分类)
ROCMultiClass roc = neuralNetwork.doEvaluation(testIterator, new ROCMultiClass());
System.out.println(roc.calculateAverageAuc());
System.out.println(roc.calculateAverageAucPR());

image.gif

对于高级评估,下面的代码片段可以被适用于训练管道。这是当内置的neuralNetwork.eval()方法输出混乱的结果或你需要检查原始数据时需要使用。

//在测试集上评估模型
Evaluation eval = new Evaluation(numClasses);
INDArray output = neuralNetwork.output(testData.getFeatures());
eval.eval(testData.getLabels(), output, testMetaData); //Note we are passing in the test set metadata here

//从评估对象上获取一个预测错误列表
//这样的预测误差只有在调用之后才可用。
iterator.setCollectMetaData(true)
List<Prediction> predictionErrors = eval.getPredictionErrors();
System.out.println("\n\n+++++ Prediction Errors +++++");
for(Prediction p : predictionErrors){
    System.out.println("Predicted class: " + p.getPredictedClass() + ", Actual class: " + p.getActualClass()
        + "\t" + p.getRecordMetaData(RecordMetaData.class).getLocation());
}

//我们也可以加载原始数据:
List<Record> predictionErrorRawData = recordReader.loadFromMetaData(predictionErrorMetaData);
for(int i=0; i<predictionErrors.size(); i++ ){
    Prediction p = predictionErrors.get(i);
    RecordMetaData meta = p.getRecordMetaData(RecordMetaData.class);
    INDArray features = predictionErrorExamples.getFeatures().getRow(i);
    INDArray labels = predictionErrorExamples.getLabels().getRow(i);
    List<Writable> rawData = predictionErrorRawData.get(i).getRecord();

    INDArray networkPrediction = model.output(features);

    System.out.println(meta.getLocation() + ": "
        + "\tRaw Data: " + rawData
        + "\tNormalized: " + features
        + "\tLabels: " + labels
        + "\tPredictions: " + networkPrediction);
}

//一此有用的评估方法:
List<Prediction> list1 = eval.getPredictions(1,2);                  //预测: 实际类 1,预测为类 2
List<Prediction> list2 = eval.getPredictionByPredictedClass(2);     //预测类2的所有预测
List<Prediction> list3 = eval.getPredictionsByActualClass(2);       //对实际类2的所有预测
image.gif


翻译:风一样的男子

有任何问题请联系微信

image

如果您觉得我的文章给了您帮助,请为我买一杯饮料吧!以下是我的支付宝,意思一下我将非常感激!

image
上一篇 下一篇

猜你喜欢

热点阅读