宏基因组注释和富集微生物

宏基因组 - (3)使用KofamKOALA对非冗余基因集进行K

2021-12-17  本文已影响0人  深山夕照深秋雨OvO

1. 这个工具有在线网页版,当然KEGG注释还有其他很多工具可以选择比如Diamond,KAAS等等

https://www.genome.jp/tools/kofamkoala/

2. 安装和使用都可以参考,这里主要是后续分析

https://blog.csdn.net/woodcorpse/article/details/106554548

最后会输出

输出文件,--cpu给了20,内存给了40G,跑了块4天

到这思路就很简单了,因为我们已经拿到了各个基因在每个样本中的相对丰度,转化一下就是这些K号在不同样本中的相对丰度,然后加起来即可。然后K号转为level1  level2  level3

cat Prodigal_KEGG_raw.txt | tr "\t" "," >  Prodigal_KEGG_raw.csv                      先转成逗号分隔符

如果用genemark的结果会报错,但是检查过,这个名字的的确确是unique的,很怪,待解决

3. 获取KO号的相对丰度表

随便写了个脚本

python KOAbdun.py Prodigal_KEGG_raw.csv > KO_Abun.raw.csv    #Prodigal_KEGG_raw.csv即KofamKOALA的输出文件,不过我这里转成了逗号分隔符

~~~

awk 'BEGIN{ FS=",";OFS="," }{a[$1]+=$2}{b[$1]+=$3}{c[$1]+=$4}{d[$1]+=$5}{e[$1]+=$6}{f[$1]+=$7}{g[$1]+=$8}{h[$1]+=$9}{m[$1]+=$10}{j[$1]+=$11}{k[$1]+=$12}{l[$1]+=$13}END{for(i in a){print i,a[i],b[i],c[i],d[i],e[i],f[i],g[i],h[i],m[i],j[i],k[i],l[i]}}' KO_Abun.raw.csv | sort -k 1 > tmp

# awk的作用是合并,如果第一列相同,就把后面12项相加,因为我有12个样本,合并为一行

head -n 1 KO_Abun.raw.csv > head ; cat head tmp > KO_Abun.csv

~~~

KO_Abun.csv即最终的KO号的相对丰度表

4. KEGG Level1/2/3的注释

再看下Kofam输出文件

把空行删掉

4.1我在网上找到了KO号和pathway_id的对应关系 (这个真是找麻了,有需要可以找我要

4.2又找到了pathway_id和Level1/2/3的对应关系  Ref:    https://www.jianshu.com/p/beb0c3727a15

把文件处理成这样:

kegg_pathway.txt

因为每个基因的相对丰度都是有的,所以map号的相对丰度也就有了

比如对于功能A,有两个基因注释到了,那功能A的相对丰度就是这两个基因的相对丰度之和

python gene2K2mapID.py kegg_pathway.txt > map_Abun.csv

~~~

因为有不少gene注释到了同一个map号

所以用awk合并相同行

awk 'BEGIN{ FS="\t";OFS="\t" }{a[$1]+=$2}{b[$1]+=$3}{c[$1]+=$4}{d[$1]+=$5}{e[$1]+=$6}{f[$1]+=$7}{g[$1]+=$8}{h[$1]+=$9}{m[$1]+=$10}{j[$1]+=$11}{k[$1]+=$12}{l[$1]+=$13}END{for(i in a){print i,a[i],b[i],c[i],d[i],e[i],f[i],g[i],h[i],m[i],j[i],k[i],l[i]}}'  map_Abun.csv > map_Abun.csv3

这行代码的意思是  如果第一列相同,则其余列相加,因为我有12个样,所以除了第一列,后面有12列数据,所以这里字母有12个  a[i] 到 l[i]

~~~

python mapID2Lv123.py map_Abun.csv3 > Lv123.Abun.tsv2

第一列是map号,第二列是Level1,第三列是Level2,第四列是Level4,到这其实就很简单了

5.最后拿到了Level1/2/3的相对丰度表,随便画个堆叠柱状图

用LEfSe找差异功能: https://www.jianshu.com/p/35e3f725c554

5.5关于KO号的可视化

只能找到这些了,一个α多样性,一个β多样性的降维,一个热图,就是这个热图咋画的我还不是很明白

Xiong et al. Microbiome (2021) 9:171

https://doi.org/10.1186/s40168-021-01118-6

《Plant developmental stage drives the differentiation in ecological role of the maize microbiome》

2022.3更新

由于K号(eg:K00174)和pathway id之间并不是一一对应的关系,而是被包含和包含 这样一个子集父集的关系,所以简单粗暴的把K号和pathway id进行一 一对应转换,不够合理

发现了一个ReportScore的工具,可以解决问题,正是利用被包含和包含的关系,类比于功能富集,不过这个时候的背景就是KEGG pathway本身,输入的基因也就是我们得到的K号

详见:

https://mp.weixin.qq.com/s/3RCxhQk357D7PShfRXTINg

https://github.com/wangpeng407/ReporterScore

6.脚本

gene2K2mapID.py mapID2Lv123.py pathway_annotation.txt即map号和Level123的对应关系

.

上一篇 下一篇

猜你喜欢

热点阅读