生信星球培训第八十七期

DAY6-谢荣俊

2020-11-04  本文已影响0人  谢荣俊

学习让我快乐!!!


生信星球学习小组第87期DAY6-学习R包 思维导图 谢荣俊

一、安装和加载R包:


  1. 镜像设置:除了通过代码以及Rstudio内在的设置方法外,和可以通过修改R的配置文件 .Rprofile一劳永逸的实现。
    具体操作参考:你还在每次配置Rstudio的下载镜像吗? 生信星球原创
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
  1. 安装:
    2.1 确保联网。
    2.2 通过命令行安装:安装命令是install.packages(“包”)或者BiocManager::install(“包”)。
    2.3. 直接下载后安装:
  2. 加载:
    library(包)
    require(包)
library(dplyr)

载入程辑包:‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union

二、dplyr五个基础函数


测试数据:提取了iris数据集的第1、2、51、52、101、102行数据。

  1. mutate(),新增列。
mutate(test, new = Sepal.Length * Sepal.Width)
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species   new
1          5.1         3.5          1.4         0.2     setosa 17.85
2          4.9         3.0          1.4         0.2     setosa 14.70
3          7.0         3.2          4.7         1.4 versicolor 22.40
4          6.4         3.2          4.5         1.5 versicolor 20.48
5          6.3         3.3          6.0         2.5  virginica 20.79
6          5.8         2.7          5.1         1.9  virginica 15.66
  1. select(),按列筛选:
    (1)按列号筛选。
> select(test,1)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3
102          5.8
select(test,c(1,5))
    Sepal.Length    Species
1            5.1     setosa
2            4.9     setosa
51           7.0 versicolor
52           6.4 versicolor
101          6.3  virginica
102          5.8  virginica
select(test,c(1,5))
    Sepal.Length    Species
1            5.1     setosa
2            4.9     setosa
51           7.0 versicolor
52           6.4 versicolor
101          6.3  virginica
102          5.8  virginica

(2)按列名筛选。

select(test, Petal.Length, Petal.Width)
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5
102          5.1         1.9
View(vars)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5
102          5.1         1.9

3.filter()筛选行。
%in%:此运算符用于标识元素是否属于向量。

filter(test, Species == "setosa")
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
 filter(test, Species == "setosa"&Sepal.Length > 5 )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
 filter(test, Species %in% c("setosa","versicolor"))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor

4.arrange(),按某1列或某几列对整个表格进行排序。默认从小到大排序。desc() 降序

 arrange(test, Sepal.Length)
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          4.9         3.0          1.4         0.2     setosa
2          5.1         3.5          1.4         0.2     setosa
3          5.8         2.7          5.1         1.9  virginica
4          6.3         3.3          6.0         2.5  virginica
5          6.4         3.2          4.5         1.5 versicolor
6          7.0         3.2          4.7         1.4 versicolor
 arrange(test, desc(Sepal.Length))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          7.0         3.2          4.7         1.4 versicolor
2          6.4         3.2          4.5         1.5 versicolor
3          6.3         3.3          6.0         2.5  virginica
4          5.8         2.7          5.1         1.9  virginica
5          5.1         3.5          1.4         0.2     setosa
6          4.9         3.0          1.4         0.2     setosa

5.summarise():汇总,对数据进行汇总操作,结合group_by使用实用性强。

summarise(test, mean(Sepal.Length), sd(Sepal.Length))
  mean(Sepal.Length) sd(Sepal.Length)
1           5.916667        0.8084965
group_by(test, Species)
# A tibble: 6 x 5
# Groups:   Species [3]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
         <dbl>       <dbl>        <dbl>       <dbl> <fct>     
1          5.1         3.5          1.4         0.2 setosa    
2          4.9         3            1.4         0.2 setosa    
3          7           3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6           2.5 virginica 
6          5.8         2.7          5.1         1.9 virginica 
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
`summarise()` ungrouping output (override with `.groups` argument)
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

5.dplyr两个实用技能:
5.1 管道操作 %>% (cmd/ctr + shift + M)
在地铁上查阅了相关文章,终于搞清楚了什么是管道操作,具体解释参考:R语言中管道操作 CSDN %>%, %T>%, %$% 和 %<>%
5.2 count统计某列的unique值
.>6. dplyr处理关系数据:
6.1.內连inner_join,取交集:
6.2.左连left_join:
6.3.全连full_join:
6.4.半连接:返回能够与y表匹配的x表所有记录。
6.5.反连接:返回无法与y表匹配的x表的所记录anti_join。
6.6.简单合并。

上一篇下一篇

猜你喜欢

热点阅读