Semantic Segmentation程序员机器学习与数据挖掘

逻辑回归(Logistic Regression)

2017-09-14  本文已影响549人  李亚鑫

逻辑回归的定义

简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。 注意,这里用的是“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。该结果往往用于和其他特征值加权求和,而非直接相乘。

那么逻辑回归与线性回归是什么关系呢?

逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。 因此与线性回归有很多相同之处,去除Sigmoid映射函数的话,逻辑回归算法就是一个线性回归。可以说,逻辑回归是以线性回归为理论支持的,但是逻辑回归通过Sigmoid函数引入了非线性因素,因此可以轻松处理0/1分类问题。

假设函数(Hypothesis function)

首先我们要先介绍一下Sigmoid函数,也称为逻辑函数(Logistic function):

从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0或者1。它的这个特性对于解决二分类问题十分重要

逻辑回归的假设函数形式如下:

选择0.5作为阈值是一个一般的做法,实际应用时特定的情况可以选择不同阈值,如果对正例的判别准确性要求高,可以选择阈值大一些,对正例的召回要求高,则可以选择阈值小一些。

决策边界(Decision Boundary)

决策边界,也称为决策面,是用于在N维空间,将不同类别样本分开的平面或曲面。

注意:决策边界是假设函数的属性,由参数决定,而不是由数据集的特征决定。

这里我们引用Andrew Ng 课程上的两张图来解释这个问题:

这里决策边界为:
这里决策边界为:

用于计算(给出)样本的类别;

决策边界
  1. 在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy),交叉熵是一个常见的代价函数,在神经网络中也会用到。下面是《神经网络与深度学习》一书对交叉熵的解释:
    交叉熵是对「出乎意料」(译者注:原文使用suprise)的度量。神经元的目标是去计算函数 x→y=y(x)。但是我们让它取而代之计算函数 x→a=a(x) 。假设我们把 a 当作 y 等于1的概率,1−ay 等于0的概率。那么,交叉熵衡量的是我们在知道 y 的真实值时的平均「出乎意料」程度。当输出是我们期望的值,我们的「出乎意料」程度比较低;当输出不是我们期望的,我们的「出乎意料」程度就比较高。
    在1948年,克劳德·艾尔伍德·香农将热力学的熵,引入到信息论,因此它又被称为香农熵(Shannon Entropy),它是香农信息量(Shannon Information Content, SIC)的期望。香农信息量用来度量不确定性的大小:一个事件的香农信息量等于0,表示该事件的发生不会给我们提供任何新的信息,例如确定性的事件,发生的概率是1,发生了也不会引起任何惊讶;当不可能事件发生时,香农信息量为无穷大,这表示给我们提供了无穷多的新信息,并且使我们无限的惊讶。更多解释可以看这里 符号说明同上.

但是我们会疑问,为什么这么定义代价函数呢?下面我会简单的解释一下:
对于单个的样本来讲, J(theta)所对应的 C(\theta)为:

上面的方程等价于:


y=1 时:
其函数图像为:

从图中可以看出,y=1 ,当预测值

代价函数与参数

代价函数衡量的是模型预测值h(θ) 与标准答案y之间的差异,所以总的代价函数J是h(θ)和y的函数,即,J=f(h(θ), y)。又因为y都是训练样本中给定的,h(θ)有θ决定,所以,最终还是模型参数θ的改变导致了J的改变。对于不同的θ,对应不同的预测值h(θ),也就对应着不同的代价函数J的取值。变化过程为:

为了更直观的看到参数对代价函数的影响,举个简单的例子:
有训练样本{(0, 0), (1, 1), (2, 2), (4, 4)},即4对训练样本,每个样本中第1个是x的值,第2个是y的值。这几个点很明显都是y=x这条直线上的点。如下图:

import matplotlib.pyplot as plt
import numpy as np
X = np.array([[0, 1, 2, 4]]).T  # 都转换成列向量
y = np.array([[0, 1, 2, 4]]).T
theta1 = np.array([[0, 0]]).T  # 三个不同的theta_1值
theta2 = np.array([[0, 0.5]]).T
theta3 = np.array([[0, 1]]).T
X_size = X.shape
X_0 = np.ones((X_size[0],1))  # 添加x_0
X_with_x0 = np.concatenate((X_0, X), axis=1)
h1 = np.dot(X_with_x0, theta1)
h2 = np.dot(X_with_x0, theta2)
h3 = np.dot(X_with_x0, theta3)
plt.plot(X, y, 'rx', label='y')
plt.plot(X, h1, 'b', label='h1, theta_1=0')
plt.plot(X, h2, 'm', label='h2, theta_1=0.5')
plt.plot(X, h3, 'g', label='h3, theta_1=1')
plt.xlabel('X')
plt.ylabel('y/h')
plt.axis([-0.1, 4.5, -0.1, 4.5])
plt.legend(loc='upper left')
plt.savefig('liner_gression_error.png', dpi=200)

常数项为0,所以可以取θ0=0,然后取不同的θ1,可以得到不同的拟合直线。当θ1=0时,拟合的直线是y=0,即蓝色线段,此时距离样本点最远,代价函数的值(误差)也最大;当θ1=1时,拟合的直线是y=x,即绿色线段,此时拟合的直线经过每一个样本点,代价函数的值为0。

通过下图可以查看随着θ1的变化,J(θ)的变化情况:

# 计算代价函数的值
def calcu_cost(theta, X, y):
    m = X.shape[0]  # sample size
    X_0 = np.ones((m,1))
    X_with_x0 = np.concatenate((X_0, X), axis=1)
    h = np.dot(X_with_x0, theta)
    return(np.dot((h-y).T, (h-y))/(2*m))

X = np.array([[0, 1, 2, 4]]).T
y = np.array([[0, 1, 2, 4]]).T
theta_0 = np.zeros((101, 1))
theta_1 = np.array([np.linspace(-2, 4, 101)]).T
theta = np.concatenate((theta_0, theta_1), axis=1)  # 101组不同的参数
J_list = []
for i in range(101):
    current_theta = theta[i:i+1].T
    cost = calcu_cost(current_theta, X, y)
    J_list.append(cost[0,0])
plt.plot(theta_1, J_list)
plt.xlabel('theta_1')
plt.ylabel('J(theta)')
plt.savefig('cost_theta.png', dpi=200)

从图中可以很直观的看到θ对代价函数的影响,当θ1=1时,代价函数J(θ)取到最小值。因为线性回归模型的代价函数(均方误差)的性质非常好,因此也可以直接使用代数的方法,求J(θ)的一阶导数为0的点,就可以直接求出最优的θ值。

代价函数与梯度

梯度下降中的梯度指的是代价函数对各个参数的偏导数,偏导数的方向决定了在学习过程中参数下降的方向,学习率(通常用α表示)决定了每步变化的步长,有了导数和学习率就可以使用梯度下降算法(Gradient Descent Algorithm)更新参数了, 即求解使 J(\theta) :

看来其和线性回归中的梯度下降函数形式一模一样,但其实是不一样的,因为在logistic回归中

推导如下:

Reference:

[机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)

sigmoid函数详解mmmmmm新浪博客

逻辑斯谛回归之决策边界 logistic regression -- decision boundary

【机器学习】代价函数(cost function)

上一篇下一篇

猜你喜欢

热点阅读