数学分析

数学分析理论基础23:不定式极限

2019-05-05  本文已影响17人  溺于恐

不定式极限

两个无穷小量或无穷大量之比的极限统称为不定式极限

{0\over 0}型不定式极限

定理:若函数f,g满足:

1.\lim\limits_{x\to x_0}f(x)=\lim\limits_{x\to x_0}g(x)=0

2.在点x_0的某空心邻域U^\circ(x_0)上两者都可导,且g'(x)\neq 0

3.\lim\limits_{x\to x_0}{f'(x)\over g'(x)}=AA可为实数也可为\pm\infty\infty

\lim\limits_{x\to x_0}{f(x)\over g(x)}=\lim\limits_{x\to x_0}{f'(x)\over g'(x)}=A

证明:

补充定义f(x_0)=g(x_0)=0,使得f,g在点x_0处连续

\forall x\in U^\circ (x_0),在区间[x_0,x](或[x,x_0])上应用柯西中值定理

{f(x)-f(x_0)\over g(x)-g(x_0)}={f'(\xi)\over g'(\xi)}

{f(x)\over g(x)}={f'(\xi)\over g'(\xi)}\xi介于x_0x之间)

当令x\to x_0时,也有\xi\to x_0

\lim\limits_{x\to x_0}{f(x)\over g(x)}=\lim\limits_{x\to x_0}{f'(\xi)\over g'(\xi)}=\lim\limits_{x\to x_0}{f'(x)\over g'(x)}=A\qquad\mathcal{Q.E.D}

注:

1.定理中x\to x_0换成x\to x_0^+,x\to x_0^-,x\to \pm\infty,x\to \infty,只要满足相应修正条件2中的邻域也可得同样的结论

2.若\lim\limits_{x\to x_0}{f'(x)\over g'(x)}仍是{0\over 0}型不定式极限,可再次用洛必达法则,即考察\lim\limits_{x\to x_0}{f'(x)\over g'(x)}是否存在。此时f',g'x_0的某邻域上必须满足条件

{\bullet\over \infty}型不定式极限

定理:若函数f,g满足:

1.在x_0的某右邻域U_+^\circ(x_0)上两者都可导,且g'(x)\neq 0

2.\lim\limits_{x\to x_0^+}g(x)=\infty

3.\lim\limits_{x\to x_0^+}{f'(x)\over g'(x)}=A(A可为实数,也可为\pm\infty,\infty)

\lim\limits_{x\to x_0^+}{f(x)\over g(x)}=A

证明:

A为实数

\forall \varepsilon\gt 0,\exists x_1\in U_+^\circ(x_0)

对满足不等式x_0<x<x_1的每个x

A-{\varepsilon\over 2}<{f'(x)\over g'(x)}<A+{\varepsilon\over 2}

f,g[x,x_1]上满足柯西中值定理

\exists \xi\in(x,x_1)\subset(x_0,x_1)使得

A-{\varepsilon\over 2}<({f(x)\over g(x)}-{f(x_1)\over g(x)})({g(x)\over g(x)-g(x_1)})={f(x)-f(x_1)\over g(x)-g(x_1)}={f'(\xi)\over g'(\xi)}<A+{\varepsilon\over 2}

\because \lim\limits_{x\to x_0^+}{g(x)\over g(x)-g(x_1)}=1

由保号性

\exists \delta_1(<x_1-x_0),使得

x_0<x<x_0+\delta_1{g(x)\over g(x)-g(x_1)}>0

(1-{g(x_1)\over g(x)})(A-{\varepsilon\over 2})+{f(x_1)\over g(x)}<{f(x)\over g(x)}<(1-{g(x_1)\over g(x)})(A+{\varepsilon\over 2})+{f(x_1)\over g(x)}

\lim\limits_{x\to x_0^+}g(x)=\infty

\lim\limits_{x\to x_0^+}((1-{g(x_1)\over g(x)})(A-{\varepsilon\over 2})+{f(x_1)\over g(x)})=A-{\varepsilon\over 2}

\lim\limits_{x\to x_0^+}((1-{g(x_1)\over g(x)})(A+{\varepsilon\over 2})+{f(x_1)\over g(x)})=A+{\varepsilon\over 2}

由保号性

\exists 0<\delta_1(<x_1-x_0)

使得x_0<x<x_0+\delta_1

{g(x)\over g(x)-g(x_1)}>0

(1-{g(x_1)\over g(x)})(A-{\varepsilon\over 2})+{f(x_1)\over g(x)}<{f(x)\over g(x)}<(1-{g(x_1)\over g(x)})(A+{\varepsilon\over 2})+{f(x_1)\over g(x)}

\lim\limits_{x\to x_0^+}g(x)=\infty

\lim\limits_{x\to x_0^+}((1-{g(x_1)\over g(x)})(A-{\varepsilon\over 2})+{f(x_1)\over g(x)})=A-{\varepsilon\over 2}

\lim\limits_{x\to x_0^+}((1-{g(x_1)\over g(x)})(A+{\varepsilon\over 2})+{f(x_1)\over g(x)})=A+{\varepsilon\over 2}

由保号性

\exists 0<\delta(<\delta_1)

x_0<x<x_0+\delta时有

A-\varepsilon<{f(x)\over g(x)}<A+\varepsilon

即证得\lim\limits_{x\to x_0^+}{f(x)\over g(x)}=A

类似可证A=\pm \infty\infty的情形\qquad\mathcal{Q.E.D}

注:

1.定理对于x\to x_0^-,x\to x_0x\to \pm\infty,x\to \infty等情形也有相同结论

2.若f',g',f'',g''满足相应条件,则可再次应用定理

3.若\lim\limits_{x\to x_0}{f'(x)\over g'(x)}不存在,不能说明\lim\limits_{x\to x_0}{f(x)\over g(x)}不存在

例:设f(x)在区间[0,+\infty]上可导,\lim\limits_{x\to +\infty}(f(x)+f'(x))=A,证明\lim\limits_{x\to +\infty}f(x)=A

证:

\lim\limits_{x\to +\infty}e^x=+\infty

\lim\limits_{x\to +\infty}f(x)=\lim\limits_{x\to +\infty}{e^xf(x)\over e^x}

=\lim\limits_{x\to +\infty}{e^x(f(x)+f'(x))\over e^x}=\lim\limits_{x\to +\infty}(f(x)+f'(x))=A\qquad\mathcal{Q.E.D}

其他类型不定式极限

不定式极限还有0\cdot \infty,1^\infty,0^0,\infty^0,\infty-\infty等类型,经过简单变换,一般均可化为{0\over 0}型或{\infty\over\infty}型的极限

例:设\begin{cases}{g(x)\over x}\quad x\neq 0\\0\qquad x=0\end{cases}

且已知g(0)=g'(0)=0,g''(0)=3,试求f'(0)

解:

\because {f(x)-f(0)\over x-0}={g(x)\over x^2}

\therefore f'(0)=\lim\limits_{x\to 0}{g(x)\over x^2}=\lim\limits_{x\to 0}{g'(x)\over 2x}

={1\over 2}\lim\limits_{x\to 0}{g'(x)-g'(0)\over x-0}={1\over 2}g''(0)={3\over 2}

数列不定式极限

可利用函数极限的归结原则,通过先求相应形式的函数极限而得到结果

例:\lim\limits_{x\to \infty}(1+{1\over n}+{1\over n^2})^n

解:

先求\lim\limits_{x\to +\infty}(1+{1\over x}+{1\over x^2})^x

取对数后求极限

\lim\limits_{x\to +\infty}x\ln (1+{1\over x}+{1\over x^2})=\lim\limits_{x\to +\infty}{\ln(1+x+x^2)-\ln x^2\over {1\over x}}

=\lim\limits_{x\to +\infty}{{2x+1\over 1+x+x^2}-{2\over x}\over -{1\over x^2}}

=\lim\limits_{x\to +\infty}{x^2+2x\over x^2+x+1}=1

由归结原则可得

\lim\limits_{x\to \infty}(1+{1\over n}+{1\over n^2})^n=\lim\limits_{x\to +\infty}(1+{1\over x}+{1\over x^2})^x=e

注:不可在数列形式下直接用洛必达法则,因为对于离散变量n\in \mathbb{N}_+求导没有意义

上一篇下一篇

猜你喜欢

热点阅读