图的最短路径
2020-05-11 本文已影响0人
ChenL
Dijkstra算法&Floyd算法
一、Dijkstra算法
Dijkstra算法思想: 只计算v0出发到其他顶点的距离。
v0: V0开始的顶点;
p[v]: 前驱顶点下标;
D[v]: 表示从V0到V的最短路径长度和;
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc *P, ShortPathTable *D)
{
int v,w,k,min;
k = 0;
/*final[w] = 1 表示求得顶点V0~Vw的最短路径*/
int final[MAXVEX];
/*1.初始化数据*/
for(v=0; v<G.numVertexes; v++)
{
//全部顶点初始化为未知最短路径状态0
final[v] = 0;
//将与V0 点有连线的顶点最短路径值;
(*D)[v] = G.arc[v0][v];
//初始化路径数组p = 0;
(*P)[v] = 0;
}
//V0到V0的路径为0
(*D)[v0] = 0;
//V0到V0 是没有路径的.
final[v0] = 1;
//v0到V0是没有路径的
(*P)[v0] = -1;
//2. 开始主循环,每次求得V0到某个顶点的最短路径
for(v=1; v<G.numVertexes; v++)
{
//当前所知距离V0顶点最近的距离
min=INFINITYC;
/*3.寻找离V0最近的顶点,G.numVertexes顶点个数*/
for(w=0; w<G.numVertexes; w++)
{
if(!final[w] && (*D)[w]<min)
{
k=w;
//w顶点距离V0顶点更近
min = (*D)[w];
}
}
//将目前找到最近的顶点置为1;
final[k] = 1;
/*4.把刚刚找到v0到v1最短路径的基础上,对于v1 与 其他顶点的边进行计算,得到v0与它们的当前最短距离;*/
for(w=0; w<G.numVertexes; w++)
{
//如果经过v顶点的路径比现在这条路径长度短,则更新
if(!final[w] && (min + G.arc[k][w]<(*D)[w]))
{
//找到更短路径, 则修改D[W],P[W]
//修改当前路径的长度
(*D)[w] = min + G.arc[k][w];
(*P)[w]=k;
}
}
}
}
输出
ShortestPath_Dijkstra(G, v0, &P, &D);
printf("最短路径路线:\n");
for(i=1;i<G.numVertexes;++i)
{
printf("v%d -> v%d : ",v0,i);
j=i;
while(P[j]!=-1)
{
printf("%d ",P[j]);
j=P[j];
}
printf("\n");
}
printf("\n最短路径权值和\n");
for(i=1;i<G.numVertexes;++i)
printf("v%d -> v%d : %d \n",G.vexs[0],G.vexs[i],D[i]);
二、Floyd算法
Floyd算法思想:求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。
Patharc 和 ShortPathTable 都是二维数组;
void ShortestPath_Floyd(MGraph G, Patharc *P, ShortPathTable *D)
{
int v,w,k;
/* 1. 初始化D与P 矩阵*/
for(v=0; v<G.numVertexes; ++v)
{
for(w=0; w<G.numVertexes; ++w)
{
/* D[v][w]值即为对应点间的权值 */
(*D)[v][w]=G.arc[v][w];
/* 初始化P P[v][w] = w*/
(*P)[v][w]=w;
}
}
//2.K表示经过的中转顶点
for(k=0; k<G.numVertexes; ++k)
{
for(v=0; v<G.numVertexes; ++v)
{
for(w=0; w<G.numVertexes; ++w)
{
/*如果经过下标为k顶点路径比原两点间路径更短 */
if ((*D)[v][w]>(*D)[v][k]+(*D)[k][w])
{
/* 将当前两点间权值设为更小的一个 */
(*D)[v][w]=(*D)[v][k]+(*D)[k][w];
/* 路径设置为经过下标为k的顶点 */
(*P)[v][w]=(*P)[v][k];
}
}
}
}
}
输出
//打印所有可能的顶点之间的最短路径以及路线值
printf("各顶点间最短路径如下:\n");
for(v=0; v<G.numVertexes; ++v)
{
for(w=v+1; w<G.numVertexes; w++)
{
printf("v%d-v%d weight: %d ",v,w,D[v][w]);
//获得第一个路径顶点下标
k=P[v][w];
//打印源点
printf(" path: %d",v);
//如果路径顶点下标不是终点
while(k!=w)
{
//打印路径顶点
printf(" -> %d",k);
//获得下一个路径顶点下标
k=P[k][w];
}
//打印终点
printf(" -> %d\n",w);
}
printf("\n");
}
//打印最终变换后的最短路径D数组
printf("最短路径D数组\n");
for(v=0; v<G.numVertexes; ++v)
{
for(w=0; w<G.numVertexes; ++w)
{
printf("%d\t",D[v][w]);
}
printf("\n");
}
//打印最终变换后的最短路径P数组
printf("最短路径P数组\n");
for(v=0; v<G.numVertexes; ++v)
{
for(w=0; w<G.numVertexes; ++w)
{
printf("%d ",P[v][w]);
}
printf("\n");
}
```