计算机视觉学习分享

【CV中的Attention机制】并联版的CBAM-BAM模块

2020-01-16  本文已影响0人  pprpp

前言:之前介绍了CBAM模块,可以方便的添加到自己的网络模型中,代码比较简单容易理解。CBAM模块的实现是通过先后施加通道注意力和空间注意力完成信息的提炼。今天介绍的这篇文章也是来自CBAM团队,可以理解为空间注意力机制和通道注意力机制的并联,但是具体实现与CBAM有较大差别,虽然代码量相对而言比较大,实际表达的内容并不复杂。

1. BAM

BAM全程是bottlenect attention module,与CBAM很相似的起名,还是CBAM的团队完成的作品。

CBAM被ECCV18接收,BAM被BMVC18接收。

CBAM可以看做是通道注意力机制和空间注意力机制的串联(先通道后空间),BAM可以看做两者的并联。

image

这个模块之所以叫bottlenect是因为这个模块放在DownSample 也就是pooling layer之前,如下图所示:

image

由于改论文与上一篇:CBAM模块的理论部分极为相似,下边直接进行算法实现部分。

2. 通道部分的实现

class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.size(0), -1)
    
class ChannelGate(nn.Module):
    def __init__(self, gate_channel, reduction_ratio=16, num_layers=1):
        super(ChannelGate, self).__init__()
        self.gate_c = nn.Sequential()
        self.gate_c.add_module('flatten', Flatten())

        gate_channels = [gate_channel]  # eg 64
        gate_channels += [gate_channel // reduction_ratio] * num_layers  # eg 4
        gate_channels += [gate_channel]  # 64
        # gate_channels: [64, 4, 4]

        for i in range(len(gate_channels) - 2):
            self.gate_c.add_module(
                'gate_c_fc_%d' % i,
                nn.Linear(gate_channels[i], gate_channels[i + 1]))
            self.gate_c.add_module('gate_c_bn_%d' % (i + 1),
                                   nn.BatchNorm1d(gate_channels[i + 1]))
            self.gate_c.add_module('gate_c_relu_%d' % (i + 1), nn.ReLU())

        self.gate_c.add_module('gate_c_fc_final',
                               nn.Linear(gate_channels[-2], gate_channels[-1]))

    def forward(self, x):
        avg_pool = F.avg_pool2d(x, x.size(2), stride=x.size(2))
        return self.gate_c(avg_pool).unsqueeze(2).unsqueeze(3).expand_as(x)

看上去代码要比CBAM中的ChannelAttention模块要多很多,贴上ChannelAttention代码方便对比:

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, rotio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.sharedMLP = nn.Sequential(
            nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),
            nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avgout = self.sharedMLP(self.avg_pool(x))
        maxout = self.sharedMLP(self.max_pool(x))
        return self.sigmoid(avgout + maxout)

首先讲ChannelGate的处理流程:

然后讲一下与CBAM中的channel attention的区别:

3. 空间注意力机制

class SpatialGate(nn.Module):
    def __init__(self,
                 gate_channel,
                 reduction_ratio=16,
                 dilation_conv_num=2,
                 dilation_val=4):
        super(SpatialGate, self).__init__()
        self.gate_s = nn.Sequential()

        self.gate_s.add_module(
            'gate_s_conv_reduce0',
            nn.Conv2d(gate_channel,
                      gate_channel // reduction_ratio,
                      kernel_size=1))
        self.gate_s.add_module('gate_s_bn_reduce0',
                               nn.BatchNorm2d(gate_channel // reduction_ratio))
        self.gate_s.add_module('gate_s_relu_reduce0', nn.ReLU())

        # 进行多个空洞卷积,丰富感受野
        for i in range(dilation_conv_num):
            self.gate_s.add_module(
                'gate_s_conv_di_%d' % i,
                nn.Conv2d(gate_channel // reduction_ratio,
                          gate_channel // reduction_ratio,
                          kernel_size=3,
                          padding=dilation_val,
                          dilation=dilation_val))
            self.gate_s.add_module(
                'gate_s_bn_di_%d' % i,
                nn.BatchNorm2d(gate_channel // reduction_ratio))
            self.gate_s.add_module('gate_s_relu_di_%d' % i, nn.ReLU())

        self.gate_s.add_module(
            'gate_s_conv_final',
            nn.Conv2d(gate_channel // reduction_ratio, 1, kernel_size=1))

    def forward(self, x):
        return self.gate_s(x).expand_as(x)

这里可以看出,代码量相比CBAM中的spatial attention要大很多,依然进行对比:

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3,7), "kernel size must be 3 or 7"
        padding = 3 if kernel_size == 7 else 1

        self.conv = nn.Conv2d(2,1,kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avgout, maxout], dim=1)
        x = self.conv(x)
        return self.sigmoid(x)

这个部分空间注意力处理就各有特色了,先说一下BAM中的流程:

区别在于:

4. BAM融合

class BAM(nn.Module):
    def __init__(self, gate_channel):
        super(BAM, self).__init__()
        self.channel_att = ChannelGate(gate_channel)
        self.spatial_att = SpatialGate(gate_channel)

    def forward(self, x):
        att = 1 + F.sigmoid(self.channel_att(x) * self.spatial_att(x))
        return att * x

最终融合很简单,需要注意的就是两者是相乘的,并且使用了sigmoid进行归一化。


论文链接:https://arxiv.org/pdf/1807.06514

核心代码:https://github.com/pprp/SimpleCVReproduction/tree/master/attention/BAM

后记:感觉BAM跟CBAM相比有一点点复杂,没有CBAM的那种简洁美。这两篇都是坐着在同一时期进行发表的,所以并没有互相的一个详细的对照,但是大概看了一下,感觉CBAM效果好于BAM。

上一篇下一篇

猜你喜欢

热点阅读