Android--Binder源码解析(一)

2022-06-02  本文已影响0人  _Jun

Binder源码解析(一)

Binder的jni方法注册

1. zygote启动

1.1 启动zygote进程

zygote是由init进程通过解析 init.zygote.rc 文件而创建的,zygote所对应的可执行程序app_process,所对应的源文件是 app_main.cpp ,进程名为zygote。

// system/core/rootdir/init.zygote32.rc 
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
    writepid /dev/cpuset/foreground/tasks

1.2 执行app_main.cpp 中的main方法

启动zygote的入口函数是 app_main.cpp 中的main方法。

frameworks/base/cmds/app_process/app_main.cpp 
// 186
int main(int argc, char* const argv[])

// 248 将zygote标志位置为true。
if (strcmp(arg, "--zygote") == 0) { 
   zygote = true; 
}

// 306 运行AndroidRuntime.cpp的start方法
if (zygote) { 
    runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
}

1.3 AndroidRuntime::start

调用startReg方法来完成jni方法的注册。

frameworks/base/core/jni/AndroidRuntime.cpp

// 1007 
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
  

//1051
if (startReg(env) < 0) 

//1440
int AndroidRuntime::startReg(JNIEnv* env){}

//1459 注册jni方法
if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {}

//1283
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
    //循环注册jni方法  
    for (size_t i = 0; i < count; i++) {
        if (array[i].mProc(env) < 0) {
            return -1;
        }
    }
    return 0;
}

// 1296 
static const RegJNIRec gRegJNI[] = { 
  // 1312 
  REG_JNI(register_android_os_Binder),
}

  

2 register_android_os_Binder

frameworks/base/core/jni/android_util_Binder.cpp

int register_android_os_Binder(JNIEnv* env)
{
    if (int_register_android_os_Binder(env) < 0)
        return -1;
    if (int_register_android_os_BinderInternal(env) < 0)
        return -1;
    if (int_register_android_os_BinderProxy(env) < 0)
        return -1;
}

2.1 int_register_android_os_Binder
//843
static const JNINativeMethod gBinderMethods[] = {
     /* name, signature, funcPtr */
    { "getCallingPid", "()I", (void*)android_os_Binder_getCallingPid },
    { "getCallingUid", "()I", (void*)android_os_Binder_getCallingUid },
    { "clearCallingIdentity", "()J", (void*)android_os_Binder_clearCallingIdentity },
    { "restoreCallingIdentity", "(J)V", (void*)android_os_Binder_restoreCallingIdentity },
    { "setThreadStrictModePolicy", "(I)V", (void*)android_os_Binder_setThreadStrictModePolicy },
    { "getThreadStrictModePolicy", "()I", (void*)android_os_Binder_getThreadStrictModePolicy },
    { "flushPendingCommands", "()V", (void*)android_os_Binder_flushPendingCommands },
    { "init", "()V", (void*)android_os_Binder_init },
    { "destroy", "()V", (void*)android_os_Binder_destroy },
    { "blockUntilThreadAvailable", "()V", (void*)android_os_Binder_blockUntilThreadAvailable }
};

//857
const char* const kBinderPathName = "android/os/Binder";

//859
static int int_register_android_os_Binder(JNIEnv* env)
{
    //查找文件kBinderPathName = “android/os/Binder”,返回对应Class对象
    jclass clazz = FindClassOrDie(env, kBinderPathName);

    //通过gBinderOffsets结构体,保存Java层Binder类的信息,为JNI层访问Java层提供通道
    gBinderOffsets.mClass = MakeGlobalRefOrDie(env, clazz);
    gBinderOffsets.mExecTransact = GetMethodIDOrDie(env, clazz, "execTransact", "(IJJI)Z");
    gBinderOffsets.mObject = GetFieldIDOrDie(env, clazz, "mObject", "J");

   //通过RegisterMethodsOrDie,将为gBinderMethods数组完成映射关系,从而为Java层访问JNI层提供通道
    return RegisterMethodsOrDie(
        env, kBinderPathName,
        gBinderMethods, NELEM(gBinderMethods));
}

2.2 int_register_android_os_BinderInternal
frameworks/base/core/jni/android_util_Binder.cpp

//925
static const JNINativeMethod gBinderInternalMethods[] = {
     /* name, signature, funcPtr */
    { "getContextObject", "()Landroid/os/IBinder;", (void*)android_os_BinderInternal_getContextObject },
    { "joinThreadPool", "()V", (void*)android_os_BinderInternal_joinThreadPool },
    { "disableBackgroundScheduling", "(Z)V", (void*)android_os_BinderInternal_disableBackgroundScheduling },
    { "handleGc", "()V", (void*)android_os_BinderInternal_handleGc }
};

//933
const char* const kBinderInternalPathName = "com/android/internal/os/BinderInternal";

//935
static int int_register_android_os_BinderInternal(JNIEnv* env)
{
    //查找文件kBinderPathName = “com/android/internal/os/BinderInternal”,返回对应Class对象
    jclass clazz = FindClassOrDie(env, kBinderInternalPathName);

    //通过gBinderInternalOffsets,保存Java层BinderInternal类的信息,为JNI层访问Java层提供通道
    gBinderInternalOffsets.mClass = MakeGlobalRefOrDie(env, clazz);
    gBinderInternalOffsets.mForceGc = GetStaticMethodIDOrDie(env, clazz, "forceBinderGc", "()V");

    //通过RegisterMethodsOrDie(),将为gBinderInternalMethods数组完成映射关系,从而为Java层访问JNI层提供通道
    return RegisterMethodsOrDie(
        env, kBinderInternalPathName,
        gBinderInternalMethods, NELEM(gBinderInternalMethods));
}


2.3 int_register_android_os_BinderProxy
frameworks/base/core/jni/android_util_Binder.cpp

//1241
static const JNINativeMethod gBinderProxyMethods[] = {
     /* name, signature, funcPtr */
    {"pingBinder",          "()Z", (void*)android_os_BinderProxy_pingBinder},
    {"isBinderAlive",       "()Z", (void*)android_os_BinderProxy_isBinderAlive},
    {"getInterfaceDescriptor", "()Ljava/lang/String;", (void*)android_os_BinderProxy_getInterfaceDescriptor},
    {"transactNative",      "(ILandroid/os/Parcel;Landroid/os/Parcel;I)Z", (void*)android_os_BinderProxy_transact},
    {"linkToDeath",         "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath},
    {"unlinkToDeath",       "(Landroid/os/IBinder$DeathRecipient;I)Z", (void*)android_os_BinderProxy_unlinkToDeath},
    {"destroy",             "()V", (void*)android_os_BinderProxy_destroy},
};

//1252
const char* const kBinderProxyPathName = "android/os/BinderProxy";

//1254
static int int_register_android_os_BinderProxy(JNIEnv* env)
{
     //查找文件kBinderPathName = “android/os/BinderProxy”,返回对应Class对象
    jclass clazz = FindClassOrDie(env, "java/lang/Error");
    gErrorOffsets.mClass = MakeGlobalRefOrDie(env, clazz);

    //通过gBinderProxyOffsets,保存Java层BinderProxy类的信息,为JNI层访问Java提供通道
    clazz = FindClassOrDie(env, kBinderProxyPathName);
    gBinderProxyOffsets.mClass = MakeGlobalRefOrDie(env, clazz);
    gBinderProxyOffsets.mConstructor = GetMethodIDOrDie(env, clazz, "<init>", "()V");
    gBinderProxyOffsets.mSendDeathNotice = GetStaticMethodIDOrDie(env, clazz, "sendDeathNotice",
            "(Landroid/os/IBinder$DeathRecipient;)V");

    gBinderProxyOffsets.mObject = GetFieldIDOrDie(env, clazz, "mObject", "J");
    gBinderProxyOffsets.mSelf = GetFieldIDOrDie(env, clazz, "mSelf",
                                                "Ljava/lang/ref/WeakReference;");
    gBinderProxyOffsets.mOrgue = GetFieldIDOrDie(env, clazz, "mOrgue", "J");

    clazz = FindClassOrDie(env, "java/lang/Class");
    gClassOffsets.mGetName = GetMethodIDOrDie(env, clazz, "getName", "()Ljava/lang/String;");

  //通过RegisterMethodsOrDie(),将为gBinderProxyMethods数组完成映射关系,从而为Java 层访问JNI层提供通道
    return RegisterMethodsOrDie(
        env, kBinderProxyPathName,
        gBinderProxyMethods, NELEM(gBinderProxyMethods));
}


binder驱动

binder_driver

1. binder_init

kernel/drivers/staging/android/binder.c
  
//4290 设备驱动入口函数  
device_initcall(binder_init);
  

//4213
static int __init binder_init(void)

//4220 创建名为binder的单线程的工作队列
binder_deferred_workqueue = create_singlethread_workqueue("binder");

//4269
ret = init_binder_device(device_name);

//4186
static int __init init_binder_device(const char *name)
{
    int ret;
    struct binder_device *binder_device;

  //4191 为binder设备分配内存
    binder_device = kzalloc(sizeof(*binder_device), GFP_KERNEL);
    
  //4195 初始化设备
    binder_device->miscdev.fops = &binder_fops;//设备的文件操作结构,这是file_operations结构
    binder_device->miscdev.minor = MISC_DYNAMIC_MINOR;//次设备号,动态分配
    binder_device->miscdev.name = name;//设备名,“binder”

    binder_device->context.binder_context_mgr_uid = INVALID_UID;
    binder_device->context.name = name;

  //4202 misc驱动注册
    ret = misc_register(&binder_device->miscdev);
    

  // 4208 将hlist节点添加到binder_devices为表头的设备链表
    hlist_add_head(&binder_device->hlist, &binder_devices);

    return ret;
}

2. binder_open

kernel/drivers/staging/android/binder.c

//3454
static int binder_open(struct inode *nodp, struct file *filp)

//3462 为binder_proc结构体在kernel分配内存空间
proc = kzalloc(sizeof(*proc), GFP_KERNEL);

//3465 将当前线程task保存到binder进程的task中
get_task_struct(current);
proc->tsk = current;
INIT_LIST_HEAD(&proc->todo);   //初始化todo列表
init_waitqueue_head(&proc->wait); //初始化wait列表
proc->default_priority = task_nice(current); //将当前进程的nice值转为进程优先级

//3474 同步锁,因为binder支持多线程访问
binder_lock(__func__);


binder_stats_created(BINDER_STAT_PROC);//binder_proc对象创建数加1
hlist_add_head(&proc->proc_node, &binder_procs);//将proc_node节点添加到binder_procs的队列头部
proc->pid = current->group_leader->pid;//进程pid
INIT_LIST_HEAD(&proc->delivered_death);//初始化已发布的死亡通知列表
filp->private_data = proc;//将这个binder_proc与filp关联起来,这样下次通过flip就能找到这个proc了

binder_unlock(__func__);//释放同步锁


3. binder_mmap

kernel/drivers/staging/android/binder.c
 
//3355  
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)

//3366 保证映射内存大小不超过4M
 if ((vma->vm_end - vma->vm_start) > SZ_4M)
        vma->vm_end = vma->vm_start + SZ_4M;
 
//3382 同步锁,保证一次只有一个进程分配内存,保证多进程间的并发访问
mutex_lock(&binder_mmap_lock);

// 是否已经做过了映射,执行过则进入if,goto跳转,释放同步锁后结束binder_mmap方法
if (proc->buffer) {
        goto err_already_mapped;
}

//采用VM_IOREMAP方式,分配一个连续的内核虚拟内存,与进程虚拟内存大小一致
area = get_vm_area(vma->vm_end - vma->vm_start, VM_IOREMAP);
//内存分配不成功直接报错
if (area == NULL) {
        ret = -ENOMEM;
        failure_string = "get_vm_area";
        goto err_get_vm_area_failed;
}

//将proc中的buffer指针指向这块内核的虚拟内存
proc->buffer = area->addr;
//计算出用户空间和内核空间的地址偏移量。地址偏移量 = 用户虚拟内存地址 - 内核虚拟内存地址
proc->user_buffer_offset = vma->vm_start - (uintptr_t)proc->buffer;
//释放锁
mutex_unlock(&binder_mmap_lock);

//3407 分配物理页的指针数组,数组大小为vma的等效page个数
proc->pages = kzalloc(sizeof(proc->pages[0]) * ((vma->vm_end - vma->vm_start) / PAGE_SIZE), GFP_KERNEL);

//3418 分配物理页面,同时映射到内核空间和进程空间,先分配1个物理页
if (binder_update_page_range(proc, 1, proc->buffer, proc->buffer + PAGE_SIZE, vma)) {}

//576
static int binder_update_page_range(struct binder_proc *proc, int allocate,
                    void *start, void *end,
                    struct vm_area_struct *vma)
  
//609 allocate为1,代表分配内存过程。如果为0则代表释放内存过程
if (allocate == 0)
        goto free_range;
  
//624 分配一个page的物理内存
*page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);

//630 物理空间映射到虚拟内核空间
ret = map_kernel_range_noflush((unsigned long)page_addr,
                    PAGE_SIZE, PAGE_KERNEL, page);

//641 物理空间映射到虚拟进程空间
ret = vm_insert_page(vma, user_page_addr, page[0]);

//3355 
static int binder_mmap(struct file *filp, struct vm_area_struct *vma)

//3425  
list_add(&buffer->entry, &proc->buffers); //将buffer连入buffers链表中
buffer->free = 1;//此内存可用
binder_insert_free_buffer(proc, buffer);//将buffer插入proc -> free_buffers链表中
proc->free_async_space = proc->buffer_size / 2; //异步的可用空闲空间大小
barrier();
proc->files = get_files_struct(current);
proc->vma = vma;
proc->vma_vm_mm = vma->vm_mm;

//494
static void binder_insert_free_buffer(struct binder_proc *proc,
                      struct binder_buffer *new_buffer)
 
//511  
while (*p) {
        parent = *p;
        buffer = rb_entry(parent, struct binder_buffer, rb_node);
        BUG_ON(!buffer->free);

    //计算得出空闲内存的大小
        buffer_size = binder_buffer_size(proc, buffer);

        if (new_buffer_size < buffer_size)
            p = &parent->rb_left;
        else
            p = &parent->rb_right;
    }
rb_link_node(&new_buffer->rb_node, parent, p);
//将buffer插入proc -> free_buffers链表中
rb_insert_color(&new_buffer->rb_node, &proc->free_buffers);  

4. binder_ioctl

kernel/drivers/staging/android/binder.c

//3241
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)

//3254  进入休眠状态,知道中断唤醒
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
 
//3259 根据当前进程的pid,从binder_proc中查找binder_thread, 如果当前线程已经加入到proc的线程队列则直接返回,如果不存在则创建binder_thread,并将当前线程添加到当前的proc
thread = binder_get_thread(proc);

//3265 进行binder的读写操作
switch (cmd) {
    case BINDER_WRITE_READ:
        ret = binder_ioctl_write_read(filp, cmd, arg, thread);
        if (ret)
            goto err;
        break;
}    
  

//3136 
static int binder_ioctl_write_read(struct file *filp,
                unsigned int cmd, unsigned long arg,
                struct binder_thread *thread)
  
//3150 把用户空间数据ubuf拷贝到bwr
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) 

//3160
if (bwr.write_size > 0) {  //当写缓存中有数据,则执行binder写操作
        ret = binder_thread_write(proc, thread,
                      bwr.write_buffer,
                      bwr.write_size,
                      &bwr.write_consumed);

    }
    if (bwr.read_size > 0) {//当读缓存中有数据,则执行binder读操作
        ret = binder_thread_read(proc, thread, bwr.read_buffer,
                     bwr.read_size,
                     &bwr.read_consumed,
                     filp->f_flags & O_NONBLOCK);
        trace_binder_read_done(ret);
    //进程todo队列不为空,则唤醒该队列中的线程
        if (!list_empty(&proc->todo))
            wake_up_interruptible(&proc->wait);
}

//3192 把内核空间数据bwr拷贝到ubuf
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {}

数据结构

1. file_operations

static const struct file_operations binder_fops = { 
   .owner = THIS_MODULE, 
   .poll = binder_poll, 
   .unlocked_ioctl = binder_ioctl, 
   .compat_ioctl = binder_ioctl, 
   .mmap = binder_mmap, 
   .open = binder_open, 
   .flush = binder_flush, 
   .release = binder_release, 
};

2. binder_proc

每个进程调用open()打开binder驱动都会创建该结构体,用于管理IPC所需的各种信息。

struct binder_proc { 
     struct hlist_node proc_node; // 进程节点
     struct rb_root threads; // binder_thread红黑树的根节点 
     struct rb_root nodes; // binder_node红黑树的根节点 
     struct rb_root refs_by_desc; // binder_ref红黑树的根节点(以 handle为 key) 
     struct rb_root refs_by_node; // binder_ref红黑树的根节点(以 ptr为 key) 
     int pid; // 相应进程 id 
     struct vm_area_struct *vma; // 指向进程虚拟地址空间的指针 
     struct mm_struct *vma_vm_mm; // 相应进程的内存结构体 
     struct task_struct *tsk; // 相应进程的 task结构体 
     struct files_struct *files; // 相应进程的文件结构体 
     struct hlist_node deferred_work_node; 
     int deferred_work;
     void *buffer; // 内核空间的起始地址 
     ptrdiff_t user_buffer_offset; // 内核空间与用户空间的地址偏移量 
     struct list_head buffers; // 所有的 buffer 
     struct rb_root free_buffers; // 空闲的 buffer 
     struct rb_root allocated_buffers; // 已分配的 buffer 
     size_t free_async_space; // 异步的可用空闲空间大小 
     struct page **pages; // 指向物理内存页指针的指针 
     size_t buffer_size; // 映射的内核空间大小 
     uint32_t buffer_free; // 可用内存总大小
     struct list_head todo; // 进程将要做的事
     wait_queue_head_t wait; // 等待队列 
     struct binder_stats stats; // binder统计信息
     struct list_head delivered_death; // 已分发的死亡通知 
     int max_threads; // 最大线程数 
     int requested_threads; // 请求的线程数
     int requested_threads_started; // 已启动的请求线程数 
     int ready_threads; // 准备就绪的线程个数
     long default_priority; // 默认优先级 
     struct dentry *debugfs_entry; 
     struct binder_context *context;
};

3. binder_node

struct binder_node { 
    int debug_id; // 节点创建时分配,具有全局唯一性,用于调试使用
    struct binder_work work;
    union { 
        struct rb_node rb_node; // binder节点正常使用,union 
        struct hlist_node dead_node; // binder节点已销毁,union 
    };
    struct binder_proc *proc; // binder所在的进程 
    struct hlist_head refs; // 所有指向该节点的 binder引用队列
    int internal_strong_refs; 
    int local_weak_refs; 
    int local_strong_refs;
    binder_uintptr_t ptr; // 指向用户空间 binder_node的指针,对应于 flat_binder_object.binder
    binder_uintptr_t cookie; // 指向用户空间 binder_node的指针,附件数据,对应于 flat_binder_object.cookie
    unsigned has_strong_ref:1; // 占位 1bit
    unsigned pending_strong_ref:1; // 占位 1bit 
    unsigned has_weak_ref:1; // 占位 1bit
    unsigned pending_weak_ref:1; // 占位 1bit
    unsigned has_async_transaction:1; // 占位 1bit
    unsigned accept_fds:1; // 占位 1bit
    unsigned min_priority:8; // 占位 8bit,最小优先级
    struct list_head async_todo; // 异步todo队列 
};

4. binder_buffer

struct binder_buffer {
    struct list_head entry; // buffer实体的地址 
    struct rb_node rb_node; // buffer实体的地址 
    /* by address */ 
    unsigned free:1; // 标记是否是空闲buffer,占位1bit
    unsigned allow_user_free:1; // 是否允许用户释放,占位1bit 
    unsigned async_transaction:1; // 占位1bit 
    unsigned debug_id:29; // 占位29bit
    
    struct binder_transaction *transaction; // 该缓存区的需要处理的事务 
    struct binder_node *target_node; // 该缓存区所需处理的Binder实体 
    size_t data_size; // 数据大小 
    size_t offsets_size; // 数据偏移量
    size_t extra_buffers_size; 
    uint8_t data[0]; // 数据地址 
};

上一篇下一篇

猜你喜欢

热点阅读