技术科普 | 我们应该在多大程度上相信机器呢?

2023-02-07  本文已影响0人  翻译技术点津

机器翻译
MACHINE TRANSLATION

我们应该在多大程度上相信机器实际上真的在慢慢学会理解语义,或者说机器翻译的准确性正在迅速接近人类水平?为了回答这个问题,让我们更加仔细地去看这些声明所依据的事实。

首先,我们应该弄清楚这些公司如何衡量一台机器或一个人的翻译质量。评估翻译质量并非那么简单明了,一段给定的文本可以有很多种正确的翻译方式,当然,也有更多错误的翻译方式。由于对给定的文本进行翻译没有唯一的正确答案,因此很难设计出一种能够自动评估系统翻译准确性的方法。

谷歌声称其于2016年推出的神经机器翻译这种新方法弥补了人和机器翻译之间的差距。另外几家大型科技公司迎头赶上,也陆续创造了他们自己的在线机器翻译程序,同样是基于编码器-解码器的架构。这些公司以及为其报道的科技媒体,都在热情地推广这些翻译服务。《麻省理工科技评论》杂志报道称:“谷歌的这一新服务几乎可以像人类一样翻译语言。”微软在一场公司推介会上表示其中文对英文新闻翻译服务的水平已经和人类相当。IBM宣称:“沃森现在能流利地说9种语言,且这个数量仍在增加。”Facebook负责语言翻译的高管坦言:“我们相信神经网络正在学着理解语言的潜在语义。”专业翻译公司DeepL的首席执行官吹嘘道:“我们的机器翻译神经网络已经发展出惊人的理解力。”


总体来说,这些声明在一定程度上是由科技公司多种多样的人工智能服务在销售方面的竞争所推动的,而语言翻译是其中一项盈利潜力很大的主要服务。虽然像谷歌翻译这样的网站会提供针对少量文本的免费翻译服务,但如果一家公司想要翻译大量文档或在自己的网站上为客户提供翻译,则需要使用收费的机器翻译服务,所有这些服务都由相同的编码器-解码器架构提供支持。

随着深度学习的引入,机器翻译的水平已经得到很大提升。那么这样就能证明机器翻译现在已接近人类水平了吗?事实上,这种声明从好几个方面看来都是不合理的。首先,对评分取平均数会产生误导性。比如,对于机器翻译来说,尽管其对大多数句子的翻译被评为“好极了”,但也有许多句子被评为“糟透了”,那么其平均水平是“还不错”,然而,你可能更想要一个总是表现得相当好、从来不会出错的、更可靠的翻译系统。

其次,这些翻译系统接近人类水平或与人类水平相当的说法完全是基于其对单个句子翻译水平的评估,而非篇幅更长的文章的翻译。在一篇文章中,句子通常会以重要的方式相互依存,而在对单个句子翻译的过程中,这些可能会被忽略。我还没有看到过任何关于机器翻译长文的评估的正式研究,一般来说,机器翻译长文的质量会差一点,比如说,对于谷歌翻译,当给定的是整个段落而非单个句子时,其翻译质量会显著下降。

最后,这些评估所使用的句子都是从新闻报道和维基百科页面中提取的,这些页面通常都经过慎重的编写以避免使用有歧义的语言或习语。这样的语言可能会给机器翻译系统带来严重的问题,但在现实世界中是无法回避的。




本文转载自:云译AI机器翻译资讯公众号 转载编辑:Amelia
上一篇 下一篇

猜你喜欢

热点阅读