第03讲:Flink 的编程模型与其他框架比较

2022-02-11  本文已影响0人  大数据技术派

Flink系列文章

  1. 第01讲:Flink 的应用场景和架构模型
  2. 第02讲:Flink 入门程序 WordCount 和 SQL 实现
  3. 第03讲:Flink 的编程模型与其他框架比较
  4. 第04讲:Flink 常用的 DataSet 和 DataStream API
  5. 第05讲:Flink SQL & Table 编程和案例
  6. 第06讲:Flink 集群安装部署和 HA 配置
  7. 第07讲:Flink 常见核心概念分析
  8. 第08讲:Flink 窗口、时间和水印
  9. 第09讲:Flink 状态与容错

本课时我们主要介绍 Flink 的编程模型与其他框架比较。

本课时的内容主要介绍基于 Flink 的编程模型,包括 Flink 程序的基础处理语义和基本构成模块,并且和 Spark、Storm 进行比较,Flink 作为最新的分布式大数据处理引擎具有哪些独特的优势呢?

Flink 的核心语义和架构模型

我们在讲解 Flink 程序的编程模型之前,先来了解一下 Flink 中的 Streams、State、Time 等核心概念和基础语义,以及 Flink 提供的不同层级的 API。

Flink 核心概念

Flink 编程模型和流式处理

我们在第 01 课中提到过,Flink 程序的基础构建模块是(Streams)和转换(Transformations),每一个数据流起始于一个或多个 Source,并终止于一个或多个 Sink。数据流类似于有向无环图(DAG)。

1.png

在分布式运行环境中,Flink 提出了算子链的概念,Flink 将多个算子放在一个任务中,由同一个线程执行,减少线程之间的切换、消息的序列化/反序列化、数据在缓冲区的交换,减少延迟的同时提高整体的吞吐量。

官网中给出的例子如下,在并行环境下,Flink 将多个 operator 的子任务链接在一起形成了一个task,每个 task 都有一个独立的线程执行。

2.png

Flink 集群模型和角色

在实际生产中,Flink 都是以集群在运行,在运行的过程中包含了两类进程。

3.png

Flink 资源和资源组

在 Flink 集群中,一个 TaskManger 就是一个 JVM 进程,并且会用独立的线程来执行 task,为了控制一个 TaskManger 能接受多少个 task,Flink 提出了 Task Slot 的概念。

我们可以简单的把 Task Slot 理解为 TaskManager 的计算资源子集。假如一个 TaskManager 拥有 5 个 slot,那么该 TaskManager 的计算资源会被平均分为 5 份,不同的 task 在不同的 slot 中执行,避免资源竞争。但是需要注意的是,slot 仅仅用来做内存的隔离,对 CPU 不起作用。那么运行在同一个 JVM 的 task 可以共享 TCP 连接,减少网络传输,在一定程度上提高了程序的运行效率,降低了资源消耗。

4.png

与此同时,Flink 还允许将不能形成算子链的两个操作,比如下图中的 flatmap 和 key&sink 放在一个 TaskSlot 里执行以达到资源共享的目的。

5.png

Flink 的优势及与其他框架的区别

Flink 在诞生之初,就以它独有的特点迅速风靡整个实时计算领域。在此之前,实时计算领域还有 Spark Streaming 和 Storm等框架,那么为什么 Flink 能够脱颖而出?我们将分别在架构、容错、语义处理等方面进行比较。

架构

Stom 的架构是经典的主从模式,并且强依赖 ZooKeeper;Spark Streaming 的架构是基于 Spark 的,它的本质是微批处理,每个 batch 都依赖 Driver,我们可以把 Spark Streaming 理解为时间维度上的 Spark DAG。

Flink 也采用了经典的主从模式,DataFlow Graph 与 Storm 形成的拓扑 Topology 结构类似,Flink 程序启动后,会根据用户的代码处理成 Stream Graph,然后优化成为 JobGraph,JobManager 会根据 JobGraph 生成 ExecutionGraph。ExecutionGraph 才是 Flink 真正能执行的数据结构,当很多个 ExecutionGraph 分布在集群中,就会形成一张网状的拓扑结构。

容错

Storm 在容错方面只支持了 Record 级别的 ACK-FAIL,发送出去的每一条消息,都可以确定是被成功处理或失败处理,因此 Storm 支持至少处理一次语义。

针对以前的 Spark Streaming 任务,我们可以配置对应的 checkpoint,也就是保存点。当任务出现 failover 的时候,会从 checkpoint 重新加载,使得数据不丢失。但是这个过程会导致原来的数据重复处理,不能做到“只处理一次”语义。

Flink 基于两阶段提交实现了精确的一次处理语义,我们将会在后面的课时中进行完整解析。

反压(BackPressure)

反压是分布式处理系统中经常遇到的问题,当消费者速度低于生产者的速度时,则需要消费者将信息反馈给生产者使得生产者的速度能和消费者的速度进行匹配。

Stom 在处理背压问题上简单粗暴,当下游消费者速度跟不上生产者的速度时会直接通知生产者,生产者停止生产数据,这种方式的缺点是不能实现逐级反压,且调优困难。设置的消费速率过小会导致集群吞吐量低下,速率过大会导致消费者 OOM。

Spark Streaming 为了实现反压这个功能,在原来的架构基础上构造了一个“速率控制器”,这个“速率控制器”会根据几个属性,如任务的结束时间、处理时长、处理消息的条数等计算一个速率。在实现控制数据的接收速率中用到了一个经典的算法,即“PID 算法”。

Flink 没有使用任何复杂的机制来解决反压问题,Flink 在数据传输过程中使用了分布式阻塞队列。我们知道在一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。

总结

本课时主要介绍了 Flink 的核心语义和架构模型,并且从架构、容错、反压等多方位比较了 Flink 和其他框架的区别,为后面我们学习 Flink 的高级特性和实战打下了基础。

以上就是本课时的内容。在下一课时中,我将介绍“Flink 常用的 DataSet 和 DataStream API”,下一课时见。

点击这里下载本课程源码

上一篇 下一篇

猜你喜欢

热点阅读