斐波那契数列算法
2021-12-14 本文已影响0人
jrglinux
/*fibonacci: 1 1 2 3 5 8 13 21 ...*/
#include "stdio.h"
#include "sys/time.h"
#include "string.h"
#include "time.h"
/*递归法, O((3/2)^n)*/
int fibo1(int n){
if(n <= 2)
return 1;
else
return fibo1(n-1) + fibo1(n-2);
}
/*迭代法, O(n)*/
int fibo2(int n){
int x = 1, y = 1;
int i = 0;
for(i = 2; i < n; i++){
y = x + y;
x = y - x;
}
return y;
}
/*矩阵快速幂法, O(logn)
* |1,1|(n-1)
* F(n) = | | * F(1)
* |1,0|
*/
void multiply(int F[2][2], int M[2][2]){
int a = F[0][0] * M[0][0] + F[0][1]*M[1][0];
int b = F[0][0] * M[0][1] + F[0][1]*M[1][1];
int c = F[1][0] * M[0][0] + F[1][1]*M[1][0];
int d = F[1][0] * M[0][1] + F[1][1]*M[1][1];
F[0][0] = a;
F[0][1] = b;
F[1][0] = c;
F[1][1] = d;
}
void power(int F[2][2], int n){
if(n < 2)
return;
int M[2][2] = {{1,1},{1,0}};
power(F, n/2);
multiply(F, F);
if( n & 1)
multiply(F, M);
}
int fibo3(int n){
int F[2][2] = {{1,1},{1,0}};
if(!n)
return 0;
power(F, n-1);
return F[0][0];
}
int main(int argc, char *argv[]){
int n = 0;
unsigned int Fn = 0;
clock_t start, end;
printf("input number:\n");
scanf("%d", &n);
/*
struct timeval tv1, tv2;
unsigned long usecs = 0;
gettimeofday(&tv1, NULL);
Fn = fibo1(n);
gettimeofday(&tv2, NULL);
usecs = tv2.tv_sec*1000000 + tv2.tv_usec - tv1.tv_sec*1000000 - tv1.tv_usec;
printf("fibo1, f(%d):%u, us:%ld\n", n, Fn, usecs);
memset(&tv1, 0, sizeof(struct timeval));
memset(&tv2, 0, sizeof(struct timeval));
gettimeofday(&tv1, NULL);
Fn = fibo2(n);
gettimeofday(&tv2, NULL);
usecs = tv2.tv_sec*1000000 + tv2.tv_usec - tv1.tv_sec*1000000 - tv1.tv_usec;
printf("fibo2, f(%d):%u, us:%ld\n", n, Fn, usecs);
*/
start = clock();
Fn = fibo1(n);
end = clock();
printf("fibo1, f(%d):%u, sec:%f\n", n, Fn, (double)(end - start)/CLOCKS_PER_SEC);
start = clock();
Fn = fibo2(n);
end = clock();
printf("fibo2, f(%d):%u, sec:%f\n", n, Fn, (double)(end - start)/CLOCKS_PER_SEC);
start = clock();
Fn = fibo3(n);
end = clock();
printf("fibo3, f(%d):%u, sec:%f\n", n, Fn, (double)(end - start)/CLOCKS_PER_SEC);
return 0;
}