朴素贝叶斯估计
2019-11-30 本文已影响0人
sadamu0912
"""朴素贝叶斯算法的实现"""
"""2019/4/12"""
import numpy as np
import pandas as pd
class NaiveBayes():
def __init__(self,lambda_):
self.lambda_=lambda_ #贝叶斯系数 取0时,即为极大似然估计
self.y_types_count=None #y的(类型:数量)
self.y_types_proba=None #y的(类型:概率)
self.x_types_proba=dict() #(xi 的编号,xi的取值,y的类型):概率
def fit(self,X_train,y_train):
self.y_types=np.unique(y_train) #y的所有取值类型
X=pd.DataFrame(X_train) #转化成pandas DataFrame数据格式,下同
y=pd.DataFrame(y_train)
# y的(类型:数量)统计
self.y_types_count=y[0].value_counts()
# y的(类型:概率)计算
self.y_types_proba=(self.y_types_count+self.lambda_)/(y.shape[0]+len(self.y_types)*self.lambda_)
# (xi 的编号,xi的取值,y的类型):概率的计算
for idx in X.columns: # 遍历xi
for j in self.y_types: # 选取每一个y的类型
p_x_y=X[(y==j).values][idx].value_counts() #选择所有y==j为真的数据点的第idx个特征的值,并对这些值进行(类型:数量)统计
for i in p_x_y.index: #计算(xi 的编号,xi的取值,y的类型):概率
self.x_types_proba[(idx,i,j)]=(p_x_y[i]+self.lambda_)/(self.y_types_count[j]+p_x_y.shape[0]*self.lambda_)
def predict(self,X_new):
res=[]
for y in self.y_types: #遍历y的可能取值
p_y=self.y_types_proba[y] #计算y的先验概率P(Y=ck)
p_xy=1
for idx,x in enumerate(X_new):
p_xy*=self.x_types_proba[(idx,x,y)] #计算P(X=(x1,x2...xd)/Y=ck)
res.append(p_y*p_xy)
for i in range(len(self.y_types)):
print("[{}]对应概率:{:.2%}".format(self.y_types[i],res[i]))
#返回最大后验概率对应的y值
return self.y_types[np.argmax(res)]
def main():
X_train=np.array([
[1,"S"],
[1,"M"],
[1,"M"],
[1,"S"],
[1,"S"],
[2,"S"],
[2,"M"],
[2,"M"],
[2,"L"],
[2,"L"],
[3,"L"],
[3,"M"],
[3,"M"],
[3,"L"],
[3,"L"]
])
y_train=np.array([-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1])
clf=NaiveBayes(lambda_=0)
clf.fit(X_train,y_train)
X_new=np.array([2,"S"])
y_predict=clf.predict(X_new)
print("{}被分类为:{}".format(X_new,y_predict))
if __name__=="__main__":
main()
朴素贝叶斯法通过训练数据集学习联合概率分布P(X,Y),具体做法是学习先验概率分布P(Y)与条件概率分布P(X|Y)(二者相乘就是联合概率分布),所以它属于生成模型。
image.png
image.png
# load the iris dataset
from sklearn.datasets import load_iris
iris = load_iris()
# store the feature matrix (X) and response vector (y)
X = iris.data
y = iris.target
# splitting X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)
# training the model on training set
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# making predictions on the testing set
y_pred = gnb.predict(X_test)
# comparing actual response values (y_test) with predicted response values (y_pred)
from sklearn import metrics
print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)
image.png
image.png