ArcFaceLoss和CenterLoss的代码实现

2021-05-13  本文已影响0人  星光下的胖子

手动实现ArcFaceLoss和CenterLoss,并用来训练MNIST数据。

导入相关库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms as T
from torch.utils.data import DataLoader
import itertools
import matplotlib.pyplot as plt
# 查看时间和进度
from tqdm import tqdm
import time
实现ArcFaceNet和CenterLossNet
class ArcFaceNet(nn.Module):
    def __init__(self, cls_num=10, feature_dim=2):
        super(ArcFaceNet, self).__init__()
        self.w = nn.Parameter(torch.randn(feature_dim, cls_num))

    def forward(self, features, m=1, s=10):
        # 特征与权重 归一化
        _features = nn.functional.normalize(features, dim=1)
        _w = nn.functional.normalize(self.w, dim=0)

        # 特征向量与参数向量的夹角theta,分子numerator,分母denominator
        theta = torch.acos(torch.matmul(_features, _w) / 10)  # /10防止下溢
        numerator = torch.exp(s * torch.cos(theta + m))
        denominator = torch.sum(torch.exp(s * torch.cos(theta)), dim=1, keepdim=True) - torch.exp(
            s * torch.cos(theta)) + numerator
        return torch.log(torch.div(numerator, denominator))
    
class CenterLossNet(nn.Module):
    def __init__(self, cls_num=10, feature_dim=2):
        super(CenterLossNet, self).__init__()
        self.centers = nn.Parameter(torch.randn(cls_num, feature_dim))

    def forward(self, features, labels, reduction='mean'):
        # 特征向量归一化
        _features = nn.functional.normalize(features)

        centers_batch = self.centers.index_select(dim=0, index=labels.long())
        # 根据论文《A Discriminative Feature Learning Approach for Deep Face Recognition》修改如下
        if reduction == 'sum':  # 返回loss的和
            return torch.sum(torch.pow(_features - centers_batch, 2)) / 2
        elif reduction == 'mean':  # 返回loss和的平均值,默认为mean方式
            return torch.sum(torch.pow(_features - centers_batch, 2)) / 2 / len(features)
        else:
            raise ValueError("ValueError: {0} is not a valid value for reduction".format(reduction))
定义LeNet模型
class LeNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 64, 3, padding=1),
            nn.PReLU(),
            nn.BatchNorm2d(64),
            nn.Conv2d(64, 32, 3, stride=2, padding=1),
            nn.PReLU(),
            nn.BatchNorm2d(32),
            nn.modules.Flatten()
        )
        self.linear = nn.Sequential(
            nn.Linear(32 * 14 * 14, 512),
            nn.PReLU(),
            nn.BatchNorm1d(512),
            nn.Linear(512, 256),
            nn.PReLU(),
            nn.BatchNorm1d(256),
            nn.Linear(256, 64),
            nn.PReLU(),
            nn.BatchNorm1d(64),
            nn.Linear(64, 32)
            # nn.Linear(64, 2, bias=False)  # features设置为二维,可以进行可视化
        )
        self.out_layer = nn.Sequential(
            nn.Linear(32, 10),
            # nn.Linear(2, 10),  # features设置为二维,可以进行可视化
            nn.LogSoftmax(dim=1)  # LogSoftmax与net=nn.NLLLoss()结合使用,求交叉熵损失
        )

    def forward(self, x):
        features = self.linear(self.conv(x))
        out = self.out_layer(features)  # 用于计算CrossEntropyLoss
        return features, out
模型训练

两种损失计算方式:

超参数都是初始随便设定的,跑了一遍,精度可达到99.29。你可以调调超参数,精度可以更高。训练代码如下:

# 特征向量可视化
def visualize(features, labels, loss, epoch):
    # 定义10种颜色
    colors = ['#ff0000', '#ffff00', '#00ff00', '#00ffff', '#0000ff', '#ff00ff', '#990000', '#999900', '#009900',
              '#009999']

    plt.clf()  # 清空画板
    # 画出所有的点,不同的label对应不同的颜色
    for i in range(10):
        plt.plot(features[labels == i, 0], features[labels == i, 1], ".", c=colors[i], label=i)
    plt.legend(loc="upper right")  # 图例
    plt.title(f"ce+cl: epoch={epoch}, loss={loss}")  # 标题
    plt.savefig("ce+cl/image/epoch%d.jpg" % epoch)  # 保存图片
    plt.draw()  # 展示图片
    plt.pause(0.001)
# 1.加载数据集
transform_op = T.Compose([  # 数据预处理
    T.ToTensor(),
    T.Normalize([0.4914], [0.2023])
])
train_dataset = datasets.MNIST("../code/data", train=True, transform=transform_op, download=False)
val_dataset = datasets.MNIST("../code/data", train=False, transform=transform_op, download=False)
train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=128, shuffle=False)

# 训练设备: GPU or CPU
device= torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 超参
lr = 1e-3
epochs = 20
lr_schedule = {
    5: 1e-3,
    10: 1e-4,
    15: 1e-5
}
alpha = 0.95  # centerloss与arcfaceloss的权重比例

1.CrossEntropyLoss+CenterLoss

# 2.创建模型
cls_num, feature_dim = 10, 32  # 10分类
# cls_num, feature_dim = 10, 2  # features设置为二维,可以进行可视化
net = LeNet().to(device)
centerloss_net = CenterLossNet(cls_num, feature_dim).to(device)
# 3.定义损失
loss_func = nn.NLLLoss()
# 4.定义优化器
optimizer = optim.Adam(itertools.chain(net.parameters(), centerloss_net.parameters()), lr)

# 5.模型训练
plt.ion()
for epoch in range(epochs):
    start = time.time()
    # 学习率策略
    if epoch in lr_schedule:
        lr = lr_schedule[epoch]
        for group in optimizer.param_groups:
            group["lr"] = lr
            
    # 1)训练集
    net.train()  # train mode
    features_loader, labels_loader = [], []  # 保存特征向量和标签的列表,用于可视化操作
    train_loss = 0.
    for images, targets in tqdm(train_dataloader):
        images, targets = images.to(device), targets.to(device)
        
        # 方式1: CrossEntropyLoss+CenterLoss
        features, out = net(images)
        # 计算损失
        ce_loss = loss_func(out, targets)
        center_loss = centerloss_net(features, targets)
        loss = alpha * ce_loss + (1 - alpha) * center_loss
        
        optimizer.zero_grad()  # 清空梯度
        loss.backward()  # 反向传播
        optimizer.step()  # 梯度更新
        
        # 统计训练损失
        train_loss += loss.cpu().detach().item()

        # 将特征和标签加入到列表中
        features_loader.append(features)
        labels_loader.append(targets)
    # 计算平均损失
    train_loss /= len(train_dataloader)

    # 2.测试集
    net.eval()  # evaluation mode
    val_loss, correct = 0., 0.
    with torch.no_grad():  # 作用域范围内不计算梯度,节省内存
        for images, targets in tqdm(val_dataloader):
            images, targets = images.to(device), targets.to(device)
            
            # 方式1: CrossEntropyLoss+CenterLoss
            features, out = net(images)
            # 计算损失
            ce_loss = loss_func(out, targets)
            center_loss = centerloss_net(features, targets)
            loss = alpha * ce_loss + (1 - alpha) * center_loss

            # 统计验证损失
            val_loss += loss.cpu().detach().item()
            # 统计正确的个数
            correct += sum(out.argmax(1) == targets)
        # 计算平均损失
        val_loss /= len(val_dataloader)
    # 计算准确率
    accuracy = correct.item() / len(val_dataset)
    
    # 打印损失和精度信息
    print(f"Epoch: {epoch}/{epochs}, Train_loss: {train_loss:.5f}, Val_loss: {val_loss:.5f}, Accuracy: {accuracy}")
    # 保存模型参数
    torch.save(net.state_dict(), f"ce+cl/checkpoint/net.pt")
    torch.save(centerloss_net.state_dict(), f"ce+cl/checkpoint/centerloss_net.pt")
    # 特征向量可视化
    features = torch.cat(features_loader, dim=0)
    labels = torch.cat(labels_loader, dim=0)
    visualize(features.cpu().detach().numpy(), labels.cpu().detach().numpy(), train_loss, epoch)
    # 查看时间和进度
    end = time.time()  # 本次轮询结束时间
    print(f"第{epoch}次轮询,共耗时{int(end - start)}秒")
    time.sleep(0.01)
plt.ioff()

2.ArcFaceLoss+CenterLoss

# 2.创建模型
cls_num, feature_dim = 10, 32  # 10分类
# cls_num, feature_dim = 10, 2  # features设置为二维,可以进行可视化
net = LeNet().to(device)
arcface_net = ArcFaceNet(cls_num, feature_dim).to(device)
centerloss_net = CenterLossNet(cls_num, feature_dim).to(device)
# 3.定义损失
loss_func = nn.NLLLoss()
# 4.定义优化器
optimizer = optim.Adam(itertools.chain(net.parameters(), arcface_net.parameters(), centerloss_net.parameters()), lr)

# 5.模型训练
plt.ion()
for epoch in range(epochs):
    start = time.time()
    # 学习率策略
    if epoch in lr_schedule:
        lr = lr_schedule[epoch]
        for group in optimizer.param_groups:
            group["lr"] = lr
            
    # 1)训练集
    net.train()  # train mode
    features_loader, labels_loader = [], []  # 保存特征向量和标签的列表,用于可视化操作
    train_loss = 0.
    for images, targets in tqdm(train_dataloader):
        images, targets = images.to(device), targets.to(device)

        # 方式2: ArcFaceLoss+CenterLoss
        features, _ = net(images)
        out = arcface_net(features)
        # 计算损失
        arcface_loss = loss_func(out, targets)  # arcfaceloss
        center_loss = centerloss_net(features, targets)  # centerloss
        loss = alpha * arcface_loss + (1 - alpha) * center_loss
        
        optimizer.zero_grad()  # 清空梯度
        loss.backward()  # 反向传播
        optimizer.step()  # 梯度更新
        
        # 统计训练损失
        train_loss += loss.cpu().detach().item()

        # 将特征和标签加入到列表中
        features_loader.append(features)
        labels_loader.append(targets)
    # 计算平均损失
    train_loss /= len(train_dataloader)

    # 2.测试集
    net.eval()  # evaluation mode
    val_loss, correct = 0., 0.
    with torch.no_grad():  # 作用域范围内不计算梯度,节省内存
        for images, targets in tqdm(val_dataloader):
            images, targets = images.to(device), targets.to(device)

            # 方式2: ArcFaceLoss+CenterLoss
            features, _ = net(images)
            out = arcface_net(features)
            # 计算损失
            arcface_loss = loss_func(out, targets)  # arcfaceloss
            center_loss = centerloss_net(features, targets)  # centerloss
            loss = alpha * arcface_loss + (1 - alpha) * center_loss

            # 统计验证损失
            val_loss += loss.cpu().detach().item()
            # 统计正确的个数
            correct += sum(out.argmax(1) == targets)
        # 计算平均损失
        val_loss /= len(val_dataloader)
    # 计算准确率
    accuracy = correct.item() / len(val_dataset)
    
    # 打印损失和精度信息
    print(alpha * arcface_loss, (1 - alpha) * center_loss, arcface_loss, center_loss)
    print(f"Epoch: {epoch}/{epochs}, Train_loss: {train_loss:.5f}, Val_loss: {val_loss:.5f}, Accuracy: {accuracy}")
    # 保存模型参数
    torch.save(net.state_dict(), f"arcface+cl/checkpoint/net.pt")
    torch.save(centerloss_net.state_dict(), f"arcface+cl/checkpoint/centerloss_net.pt")
    torch.save(arcface_net.state_dict(), f"arcface+cl/checkpoint/arcface_net.pt")
    # 特征向量可视化
    features = torch.cat(features_loader, dim=0)
    labels = torch.cat(labels_loader, dim=0)
    visualize(features.cpu().detach().numpy(), labels.cpu().detach().numpy(), epoch, train_loss, val_loss, accuracy)
    # 查看时间和进度
    end = time.time()  # 本次轮询结束时间
    print(f"第{epoch}次轮询,共耗时{int(end - start)}秒")
    time.sleep(0.01)
plt.ioff()
上一篇下一篇

猜你喜欢

热点阅读