Python数据处理从零开始----第四章(可视化)(8)火山图
2018-11-16 本文已影响442人
柳叶刀与小鼠标
目录
Python数据处理从零开始----第四章(可视化)①
Python数据处理从零开始----第四章(可视化)②
Python数据处理从零开始----第四章(可视化)③
Python数据处理从零开始----第四章(可视化)④
Python数据处理从零开始----第四章(可视化)⑤(韦恩图)
Python数据处理从零开始----第四章(可视化)⑥(画布设置)
Python数据处理从零开始----第四章(可视化)⑦(多图合并)
Python数据处理从零开始----第四章(可视化)⑧火山图
===============================================
R语言之可视化⑨火山图
===============================================
来源数据分别是差异基因分析的两列指标,FoldChange和Pvalue值,根据这两个指标,我们可以把基因分为up,down和normal三种差异表达类型,然后使用python的seaborn程序绘制散点图即可。最终得到想要的火山图,相对于ggplot2绘制火山图python的优点是步骤明确易懂。
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 16 12:21:38 2018
@author: czh
"""
%clear
%reset -f
# In[*]
%matplotlib inline
import pandas as pd # Data analysis
import numpy as np # Scientific computing
import matplotlib.pyplot as plt # Plotting
import matplotlib.colors as colors # Coloring
import seaborn as sns # Statistical visualization
fold1 = pd.DataFrame(fold)
fold1['a'] = range(len(fold1))
fold1 = fold1.set_index('a')
# In[*]
pvalue1 = pd.DataFrame(pvalue)
result = pd.concat([fold1, pvalue1],axis=1,ignore_index=True)
result.columns = ['fold','pvalue']
result['log(pvalue)'] = -np.log10(result['pvalue'])
# In[*]
result['sig'] = 'normal'
result['size'] =np.abs(result['fold'])/10
result.loc[(result.fold> 1 )&(result.pvalue < 0.05),'sig'] = 'up'
result.loc[(result.fold< -1 )&(result.pvalue < 0.05),'sig'] = 'down'
# In[*]
ax = sns.scatterplot(x="fold", y="log(pvalue)",
hue='sig',
hue_order = ('down','normal','up'),
palette=("#377EB8","grey","#E41A1C"),
data=result)
ax.set_ylabel('-log(pvalue)',fontweight='bold')
ax.set_xlabel('FoldChange',fontweight='bold')
![](https://img.haomeiwen.com/i9218360/a4ac1e540274b2e6.png)