seuratR

R语言基础入门(3) select选择列的方法从基础到高级

2021-05-16  本文已影响0人  R语言数据分析指南

前面的2节介绍了数据的格式转换宽表转长表函数pivot_longer以及行过滤函数filter( )今天来继续介绍列选择函数select( )的使用

选择列:基础

要选择几列,只需在select函数中添加其名称即可。添加它们的顺序将确定它们在输出中出现的顺序

msleep %>%
  select(name, genus, sleep_total, awake) 
# A tibble: 83 x 4
   name                       genus       sleep_total awake
   <chr>                      <chr>             <dbl> <dbl>
 1 Cheetah                    Acinonyx           12.1  11.9
 2 Owl monkey                 Aotus              17     7  
 3 Mountain beaver            Aplodontia         14.4   9.6

如果要添加大量的列,可以使用start_col:end_col的语句:

msleep %>%
  select(name:order,sleep_cycle:brainwt)
# A tibble: 83 x 7
   name                       genus       vore  order        sleep_cycle awake  brainwt
   <chr>                      <chr>       <chr> <chr>              <dbl> <dbl>    <dbl>
 1 Cheetah                    Acinonyx    carni Carnivora         NA      11.9 NA      
 2 Owl monkey                 Aotus       omni  Primates          NA       7    0.0155 
 3 Mountain beaver            Aplodontia  herbi Rodentia          NA       9.6 NA      

还可以通过在列名称前面添加减号来取消列

msleep %>% 
  select(-conservation, -(sleep_total:awake))
# A tibble: 83 x 6
   name                       genus       vore  order         brainwt  bodywt
   <chr>                      <chr>       <chr> <chr>           <dbl>   <dbl>
 1 Cheetah                    Acinonyx    carni Carnivora    NA        50    
 2 Owl monkey                 Aotus       omni  Primates      0.0155    0.48 
 3 Mountain beaver            Aplodontia  herbi Rodentia     NA         1.35 

根据部分列名选择列

如果有很多的列具有相似的结构,可以通过starts_with(),ends_with()或contains( )来进行选择

msleep %>% select(name, starts_with("sleep")) 
# A tibble: 83 x 4
   name                       sleep_total sleep_rem sleep_cycle
   <chr>                            <dbl>     <dbl>       <dbl>
 1 Cheetah                           12.1      NA        NA    
 2 Owl monkey                        17         1.8      NA    
 3 Mountain beaver                   14.4       2.4      NA    
msleep %>%
  select(contains("eep"), ends_with("wt"))
# A tibble: 83 x 5
   sleep_total sleep_rem sleep_cycle  brainwt  bodywt
         <dbl>     <dbl>       <dbl>    <dbl>   <dbl>
 1        12.1      NA        NA     NA        50    
 2        17         1.8      NA      0.0155    0.48 
 3        14.4       2.4      NA     NA         1.35 

根据正则表达式选择列

如果列名没有相似性,则可以使用matches()来进行选择;
以下示例代码将添加包含“ o”,后跟一个或多个其他字母和“ er”的列

msleep %>% select(matches("o.+er")) 
# A tibble: 83 x 2
   order        conservation
   <chr>        <chr>       
 1 Carnivora    lc          
 2 Primates     NA          
 3 Rodentia     nt          

根据数据集来选择列

class <- c("name", "genus", "vore", "order", "conservation")

msleep %>% select(!!class)
# A tibble: 83 x 5
   name                       genus       vore  order        conservation
   <chr>                      <chr>       <chr> <chr>        <chr>       
 1 Cheetah                    Acinonyx    carni Carnivora    lc          
 2 Owl monkey                 Aotus       omni  Primates     NA          
 3 Mountain beaver            Aplodontia  herbi Rodentia     nt          

按数据类型选择列 (重点)

select_if( )函数来判断数据类型,可以使用其来选择所有字符串列select_if(is.character)。同样也可以添加is.numeric, is.integer,is.double,is.logical,is.factor等列;如果有日期列,则可以加载lubridate包,然后使用 is.POSIXt或is.Date

msleep %>% select_if(is.numeric) 
# A tibble: 83 x 6
   sleep_total sleep_rem sleep_cycle awake  brainwt  bodywt
         <dbl>     <dbl>       <dbl> <dbl>    <dbl>   <dbl>
 1        12.1      NA        NA      11.9 NA        50    
 2        17         1.8      NA       7    0.0155    0.48 
 3        14.4       2.4      NA       9.6 NA         1.35 

同样也可以取反,选择不需要那种数据类型的列

msleep %>% select_if(~!is.numeric(.))
# A tibble: 83 x 5
   name                       genus       vore  order        conservation
   <chr>                      <chr>       <chr> <chr>        <chr>       
 1 Cheetah                    Acinonyx    carni Carnivora    lc          
 2 Owl monkey                 Aotus       omni  Primates     NA          
 3 Mountain beaver            Aplodontia  herbi Rodentia     nt          

通过逻辑表达式选择列 (重点)

select_if( )不仅仅是基于数据类型来进行选择。还可以选择所有列平均值大于10的列。
mean > 10它本身不是函数,因此需要在前面添加波浪号,或使用funs()将语句转换为函数

msleep %>% select_if(is.numeric) %>% 
  select_if(~mean(., na.rm=TRUE) > 10)
# A tibble: 83 x 3
   sleep_total awake  bodywt
         <dbl> <dbl>   <dbl>
 1        12.1  11.9  50    
 2        17     7     0.48 
 3        14.4   9.6   1.35 

也可以这样写

msleep %>%
  select_if(~is.numeric(.) & mean(., na.rm=TRUE) > 10)

另一个有用的select_if参数是n_distinct(),它可以在列中找到的不同值出现的数量

msleep %>% select_if(~n_distinct(.) < 10)
  vore  conservation
   <chr> <chr>       
 1 carni lc          
 2 omni  NA          
 3 herbi nt          
 4 omni  lc          

对列进行重新排序

everything()函数可将选择的列移至表格最前

msleep %>%
  select(conservation, sleep_total, everything())
   conservation sleep_total name      genus vore  order  sleep_rem sleep_cycle awake  brainwt
   <chr>              <dbl> <chr>     <chr> <chr> <chr>      <dbl>       <dbl> <dbl>    <dbl>
 1 lc                  12.1 Cheetah   Acin… carni Carni…      NA        NA      11.9 NA      
 2 NA                  17   Owl monk… Aotus omni  Prima…       1.8      NA       7    0.0155 
 3 nt                  14.4 Mountain… Aplo… herbi Roden…       2.4      NA       9.6 NA      

更改列名

msleep %>%
  select(animal = name, sleep_total, extinction_threat = conservation)
# A tibble: 83 x 3
   animal                     sleep_total extinction_threat
   <chr>                            <dbl> <chr>            
 1 Cheetah                           12.1 lc               
 2 Owl monkey                        17   NA               
 3 Mountain beaver                   14.4 nt               

也可以通过rename()函数来重命名

msleep %>% 
  rename(animal = name, extinction_threat = conservation)
# A tibble: 83 x 11
   animal genus vore  order extinction_thre… sleep_total sleep_rem sleep_cycle awake  brainwt
   <chr>  <chr> <chr> <chr> <chr>                  <dbl>     <dbl>       <dbl> <dbl>    <dbl>
 1 Cheet… Acin… carni Carn… lc                      12.1      NA        NA      11.9 NA      
 2 Owl m… Aotus omni  Prim… NA                      17         1.8      NA       7    0.0155 
 3 Mount… Aplo… herbi Rode… nt                      14.4       2.4      NA       9.6 NA      

重新格式化所有列名

select_all()函数允许更改所有列,并以一个函数作为参数。
要以大写形式获取所有列名称,可以使用toupper(),也可以使用tolower()将其全部转化为小写

msleep %>% select_all(toupper)
   NAME      GENUS VORE  ORDER  CONSERVATION SLEEP_TOTAL SLEEP_REM SLEEP_CYCLE AWAKE  BRAINWT
   <chr>     <chr> <chr> <chr>  <chr>              <dbl>     <dbl>       <dbl> <dbl>    <dbl>
 1 Cheetah   Acin… carni Carni… lc                  12.1      NA        NA      11.9 NA      
 2 Owl monk… Aotus omni  Prima… NA                  17         1.8      NA       7    0.0155 
 3 Mountain… Aplo… herbi Roden… nt                  14.4       2.4      NA       9.6 NA      

自主创建函数(重点)

将列名中的空格替换为下划线

msleep2 <- select(msleep, name, sleep_total, brainwt)
colnames(msleep2) <- c("name", "sleep total", "brain weight")

msleep2 %>%
  select_all(~str_replace(., " ", "_"))
   name                       sleep_total brain_weight
   <chr>                            <dbl>        <dbl>
 1 Cheetah                           12.1     NA      
 2 Owl monkey                        17        0.0155 
 3 Mountain beaver                   14.4     NA      
 4 Greater short-tailed shrew        14.9      0.00029

还可以使用select_all与str_replace来消除多余的字符

msleep2 <- select(msleep, name, sleep_total, brainwt)
colnames(msleep2) <- c("Q1 name", "Q2 sleep total", "Q3 brain weight")
msleep2[1:3,]
  `Q1 name`       `Q2 sleep total` `Q3 brain weight`
  <chr>                      <dbl>             <dbl>
1 Cheetah                     12.1           NA     
2 Owl monkey                  17              0.0155
3 Mountain beaver             14.4           NA 
msleep2 %>%
  select_all(~str_replace(., "Q[0-9]+", "")) %>% 
  select_all(~str_replace(., " ", "_"))  
   `_name`                    `_sleep total` `_brain weight`
   <chr>                               <dbl>           <dbl>
 1 Cheetah                              12.1        NA      
 2 Owl monkey                           17           0.0155 
 3 Mountain beaver                      14.4        NA      

行名称到列

某些数据框的行名本身实际上并不是一列,例如mtcars数据集

                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

如果希望此列为实际列,则可以使用该 rownames_to_column()函数,并指定新的列名称

mtcars %>%
  tibble::rownames_to_column("car_model") %>% head
          car_model  mpg cyl disp  hp drat    wt  qsec vs am gear carb
1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
6           Valiant 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

本节介绍了select( )函数的绝大部分使用方法,在以后的数据处理中希望多多查阅一定能大大提高数据处理的效率,下一节将介绍mutate( )函数,敬请期待

上一篇 下一篇

猜你喜欢

热点阅读