@IT·互联网Data Structures and Algorithm每天一个知识点

地图软件是如何计算出最优出行路径的?—— Dijkstra 算

2022-03-28  本文已影响0人  Sun东辉

Google 地图、百度地图、高德地图这样的地图软件,你应该经常使用吧?如果想从家开车到公司,你只需要输入起始、结束地址,地图就会给你规划一条最优出行路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红绿灯路线等等。作为一名软件开发工程师,你是否思考过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法呢?

我们先解决最简单的,最短路线。

解决软件开发中的实际问题,最重要的一点就是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?我们都知道,图这种数据结构的表达能力很强,显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两个顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。

想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法(一个顶点到一个顶点)。提到最短路径算法,最出名的莫过于 Dijkstra 算法了。所以,我们现在来看,Dijkstra 算法是怎么工作的。

这个算法的原理稍微有点儿复杂,单纯的文字描述,不是很好懂。所以,我结合代码来讲解。

// 因为Java提供的优先级队列,没有暴露更新数据的接口,所以我们需要自己实现一个
private class PriorityQueue { // 根据vertex.dist构建小顶堆
  private Vertex[] nodes;
  private int count;
  public PriorityQueue(int v) {
    this.nodes = new Vertex[v+1];
    this.count = v;
  }
  public Vertex poll() { // TODO: ... }
  public void add(Vertex vertex) { // TODO: ... }
  // 更新结点的值,并且从下往上堆化,重新符合堆的定义。时间复杂度O(logn)。
  public void update(Vertex vertex) { // TODO: ...} 
  public boolean isEmpty() { // TODO: ...}
}

public void dijkstra(int s, int t) { // 从顶点s到顶点t的最短路径
  int[] predecessor = new int[this.v]; // 用来还原最短路径
  Vertex[] vertexes = new Vertex[this.v];
  for (int i = 0; i < this.v; ++i) {
    vertexes[i] = new Vertex(i, Integer.MAX_VALUE);
  }
  PriorityQueue queue = new PriorityQueue(this.v);// 小顶堆
  boolean[] inqueue = new boolean[this.v]; // 标记是否进入过队列
  vertexes[s].dist = 0;
  queue.add(vertexes[s]);
  inqueue[s] = true;
  while (!queue.isEmpty()) {
    Vertex minVertex= queue.poll(); // 取堆顶元素并删除
    if (minVertex.id == t) break; // 最短路径产生了
    for (int i = 0; i < adj[minVertex.id].size(); ++i) {
      Edge e = adj[minVertex.id].get(i); // 取出一条minVetex相连的边
      Vertex nextVertex = vertexes[e.tid]; // minVertex-->nextVertex
      if (minVertex.dist + e.w < nextVertex.dist) { // 更新next的dist
        nextVertex.dist = minVertex.dist + e.w;
        predecessor[nextVertex.id] = minVertex.id;
        if (inqueue[nextVertex.id] == true) {
          queue.update(nextVertex); // 更新队列中的dist值
        } else {
          queue.add(nextVertex);
          inqueue[nextVertex.id] = true;
        }
      }
    }
  }
  // 输出最短路径
  System.out.print(s);
  print(s, t, predecessor);
}

private void print(int s, int t, int[] predecessor) {
  if (s == t) return;
  print(s, predecessor[t], predecessor);
  System.out.print("->" + t);
}

我们用 vertexes 数组,记录从起始顶点到每个顶点的距离(dist)。起初,我们把所有顶点的 dist 都初始化为无穷大(也就是代码中的 Integer.MAX_VALUE)。我们把起始顶点的 dist 值初始化为 0,然后将其放到优先级队列中。

我们从优先级队列中取出 dist 最小的顶点 minVertex,然后考察这个顶点可达的所有顶点(代码中的 nextVertex)。如果 minVertex 的 dist 值加上 minVertex 与 nextVertex 之间边的权重 w 小于 nextVertex 当前的 dist 值,也就是说,存在另一条更短的路径,它经过 minVertex 到达 nextVertex。那我们就把 nextVertex 的 dist 更新为 minVertex 的 dist 值加上 w。然后,我们把 nextVertex 加入到优先级队列中。重复这个过程,直到找到终止顶点 t 或者队列为空。

以上就是 Dijkstra 算法的核心逻辑。除此之外,代码中还有两个额外的变量,predecessor 数组和 inqueue 数组。

如果你还不理解,可以看看下面这张图,帮助你理解。

理解了 Dijkstra 的原理和代码实现,我们来看下,Dijkstra 算法的时间复杂度是多少?刚刚的代码实现中,最复杂就是 while 循环嵌套 for 循环那部分代码了。while 循环最多会执行 V 次(V 表示顶点的个数),而内部的 for 循环的执行次数不确定,跟每个顶点的相邻边的个数有关,我们分别记作 E0,E1,E2,……,E(V-1)。如果我们把这 V 个顶点的边都加起来,最大也不会超过图中所有边的个数 E(E 表示边的个数)。

for 循环内部的代码涉及从优先级队列取数据、往优先级队列中添加数据、更新优先级队列中的数据,这样三个主要的操作。我们知道,优先级队列是用堆来实现的,堆中的这几个操作,时间复杂度都是 O(logV)(堆中的元素个数不会超过顶点的个数 V)。所以,综合这两部分,再利用乘法原则,整个代码的时间复杂度就是 O(E*logV)。

弄懂了 Dijkstra 算法,我们再来回答之前的问题,如何计算最优出行路线?

从理论上讲,用 Dijkstra 算法可以计算出两点之间的最短路径。但是,你有没有想过,对于一个超级大地图来说,岔路口、道路都非常多,对应到图这种数据结构上来说,就有非常多的顶点和边。如果为了计算两点之间的最短路径,在一个超级大图上动用 Dijkstra 算法,遍历所有的顶点和边,显然会非常耗时。那我们有没有什么优化的方法呢?

做工程不像做理论,一定要给出个最优解。理论上算法再好,如果执行效率太低,也无法应用到实际的工程中。对于软件开发工程师来说,我们经常要根据问题的实际背景,对解决方案权衡取舍。类似出行路线这种工程上的问题,我们没有必要非得求出个绝对最优解。很多时候,为了兼顾执行效率,我们只需要计算出一个可行的次优解就可以了

关于这个问题,虽然地图很大,但是两点之间的最短路径或者说较好的出行路径,并不会很“发散”,只会出现在两点之间和两点附近的区块内。所以我们可以在整个大地图上,划出一个小的区块,这个小区块恰好可以覆盖住两个点,但又不会很大。我们只需要在这个小区块内部运行 Dijkstra 算法,这样就可以避免遍历整个大图,也就大大提高了执行效率。

不过你可能会想到,如果两点距离比较远,从成都高新区的某个地点,到北京海淀区的某个地点,那上面的这种处理方法,显然就不工作了,毕竟覆盖成都和北京的区块并不小。对于这样两点之间距离较远的路线规划,我们可以把成都高新区或者成都看作一个顶点,把北京海淀区或者北京看作一个顶点,先规划大的出行路线。比如,如何从成都到北京,必须要经过某几个顶点,或者某几条干道,然后再细化每个阶段的小路线。

这样,最短路径问题就解决了。我们再来看另外两个问题,最少时间和最少红绿灯。

前面讲最短路径的时候,每条边的权重是路的长度。在计算最少时间的时候,算法还是不变,我们只需要把边的权重,从路的长度变成经过这段路所需要的时间。不过,这个时间会根据拥堵情况时刻变化。如何计算车通过一段路的时间呢?这是一个蛮有意思的问题,一个简单的方式是用大数据统计历史上相同的时刻,车通过这一路段的平均时间,再根据临近的前一段时间的数据,综合算出通行时间。

关于最少红绿灯的出行方案,实际上,每经过一条边,就要经过一个红绿灯,我们只需要把每条边的权值改为 1 即可,算法还是不变,可以继续使用前面讲的 Dijkstra 算法。不过,边的权值为 1,也就相当于无权图了,我们还可以使用广度优先搜索算法计算出两点之间的最短路径。

这里给出的所有方案都非常粗糙,只是为了给你展示,如何结合实际的场景,灵活地应用算法,让算法为我们所用,真实的地图软件的路径规划,要比这个复杂很多。而且,比起 Dijkstra 算法,地图软件用的更多的是类似 A* 的启发式搜索算法,不过也是在 Dijkstra 算法上的优化罢了,我后面会介绍 A* 的启发式搜索算法。

上一篇 下一篇

猜你喜欢

热点阅读