二叉树顺序存储
2020-04-25 本文已影响0人
ChenL
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int CElemType; /* 树结点的数据类型,目前暂定为整型 */
typedef CElemType SqBiTree[MAX_TREE_SIZE]; /* 0号单元存储根结点 */
CElemType Nil = 0; /*设整型以0为空 或者以 INT_MAX(65535)*/
定义一个树的结点
typedef struct {
int level; //结点层
int order; //本层的序号(按照满二叉树给定序号规则)
}Position;
打印
Status visit(CElemType c){
printf("%d ",c);
return OK;
}
初始化:构造空二叉树T,因为T是固定数组,不会改变.
Status InitBiTree(SqBiTree T){
for (int i = 0; i < MAX_TREE_SIZE; i++) {
//将二叉树初始化值置空
T[i] = Nil;
}
return OK;
}
初始化:构造顺序存储的二叉树T,按层序次序输入二叉树中的结点值(字符型或整型),
Status CreateBiTree(SqBiTree T){
int i = 0;
//printf("按层序输入结点的值(整型),0表示空结点, 输入999结束.结点数<=%d\n",MAX_TREE_SIZE);
/*
1 -->1
2 3 -->2
4 5 6 7 -->3
8 9 10 -->4
1 2 3 4 5 6 7 8 9 10 Nil Nil Nil
*/
while (i < 10) {
T[i] = i+1;
printf("%d ",T[i]);
//结点不为空,且无双亲结点
if (i != 0 && T[(i+1)/2-1] == Nil && T[i] != Nil) {
printf("出现无双亲的非根结点%d\n",T[i]);
exit(ERROR);
}
i++;
}
//将空赋值给T的后面的结点
while (i < MAX_TREE_SIZE) {
T[i] = Nil;
i++;
}
return OK;
}
在顺序存储结构中, 两个函数完全一样的结果
#define ClearBiTree InitBiTree
判断二叉树是否为空
初始条件: 二叉树已存在
操作结果: 若T为空二叉树,则返回TRUE,否则返回FALSE;
Status BiTreeEmpty(SqBiTree T){
//根结点为空,则二叉树为空
if (T[0] == Nil)
return TRUE;
return FALSE;
}
获取二叉树的深度
初始条件: 二叉树已存在
操作结果: 返回二叉树T深度;
int BiTreeDepth(SqBiTree T){
int j = -1;
int i;
//找到最后一个结点
//MAX_TREE_SIZE -> 100 -> 10 目的找到最后一个结点10的位置
for (i = MAX_TREE_SIZE-1 ; i>=0; i--) {
if (T[i] != Nil)
break;
}
do {
j++;
} while ( powl(2, j) <= i); //计算2的次幂
return j;
}
返回处于位置e(层,本层序号)的结点值
初始条件: 二叉树T存在,e是T中某个结点(的位置)
操作结构: 返回处于位置e(层,本层序号)的结点值
CElemType Value(SqBiTree T,Position e){
/*
Position.level -> 结点层.表示第几层;
Position.order -> 本层的序号(按照满二叉树给定序号规则)
*/
//pow(2,e.level-1) 找到层序
printf("%d\n",(int)pow(2,e.level-1));
//e.order
printf("%d\n",e.order);
//4+2-2;
return T[(int)pow(2, e.level-1)+e.order-2];
}
获取二叉树跟结点的值
初始条件: 二叉树T存在
操作结果: 当T不空,用e返回T的根, 返回OK; 否则返回ERROR
Status Root(SqBiTree T,CElemType *e){
if (BiTreeEmpty(T)) {
return ERROR;
}
*e = T[0];
return OK;
}
给处于位置e的结点赋值
初始条件: 二叉树存在,e是T中某个结点的位置
操作结果: 给处于位置e的结点赋值Value;
Status Assign(SqBiTree T,Position e,CElemType value){
//找到当前e在数组中的具体位置索引
int i = (int)powl(2, e.level-1)+e.order -2;
//叶子结点的双亲为空
if (value != Nil && T[(i+1)/2-1] == Nil) {
return ERROR;
}
//给双亲赋空值但是有叶子结点
if (value == Nil && (T[i*2+1] != Nil || T[i*2+2] != Nil)) {
return ERROR;
}
T[i] = value;
return OK;
}
获取e的双亲;
初始条件: 二叉树存在,e是T中的某一个结点
操作结果: 若e是T的非根结点, 则返回它的双亲,否则返回"空"
CElemType Parent(SqBiTree T, CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 1 ; i < MAX_TREE_SIZE; i++) {
//找到e
if (T[i] == e) {
return T[(i+1)/2 - 1];
}
}
//没有找到
return Nil;
}
获取某个结点的左孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
CElemType LeftChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+1];
}
}
//没有找到
return Nil;
}
获取某个结点的右孩子;
初始条件:二叉树T存在,e是某个结点
操作结果:返回e的左孩子,若e无左孩子,则返回"空"
CElemType RightChild(SqBiTree T,CElemType e){
//空树
if (T[0] == Nil) {
return Nil;
}
for (int i = 0 ; i < MAX_TREE_SIZE-1; i++) {
//找到e
if (T[i] == e) {
return T[i*2+2];
}
}
//没有找到
return Nil;
}
获取结点的左兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的左兄弟。若e是T的左孩子或无左兄弟,则返回"空"
CElemType LeftSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为偶数(是右孩子) */
if(T[i]==e&&i%2==0)
return T[i-1];
return Nil; /* 没找到e */
}
获取结点的右兄弟
初始条件: 二叉树T存在,e是T中某个结点
操作结果: 返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
CElemType RightSibling(SqBiTree T,CElemType e)
{
/* 空树 */
if(T[0]==Nil)
return Nil;
for(int i=1;i<=MAX_TREE_SIZE-1;i++)
/* 找到e且其序号为奇数(是左孩子) */
if(T[i]==e&&i%2==1)
return T[i+1];
return Nil; /* 没找到e */
}
二叉树的遍历
1、层序遍历二叉树
void LevelOrderTraverse(SqBiTree T){
int i = MAX_TREE_SIZE-1;
//找到最后一个非空结点的序号
while (T[i] == Nil) i--;
//从根结点起,按层序遍历二叉树
for (int j = 0; j <= i; j++)
//只遍历非空结点
if (T[j] != Nil)
visit(T[j]);
printf("\n");
}
2、前序遍历二叉树
void PreTraverse(SqBiTree T,int e){
//打印结点数据
visit(T[e]);
//先序遍历左子树
if (T[2 * e + 1] != Nil) {
PreTraverse(T, 2*e+1);
}
//最后先序遍历右子树
if (T[2 * e + 2] != Nil) {
PreTraverse(T, 2*e+2);
}
Status PreOrderTraverse(SqBiTree T){
//树不为空
if (!BiTreeEmpty(T)) {
PreTraverse(T, 0);
}
printf("\n");
return OK;
}
3、中序遍历
void InTraverse(SqBiTree T, int e){
/* 左子树不空 */
if (T[2*e+1] != Nil)
InTraverse(T, 2*e+1);
visit(T[e]);
/* 右子树不空 */
if (T[2*e+2] != Nil)
InTraverse(T, 2*e+2);
}
Status InOrderTraverse(SqBiTree T){
/* 树不空 */
if (!BiTreeEmpty(T)) {
InTraverse(T, 0);
}
printf("\n");
return OK;
}
3、 后序遍历
void PostTraverse(SqBiTree T,int e)
{ /* 左子树不空 */
if(T[2*e+1]!=Nil)
PostTraverse(T,2*e+1);
/* 右子树不空 */
if(T[2*e+2]!=Nil)
PostTraverse(T,2*e+2);
visit(T[e]);
}
Status PostOrderTraverse(SqBiTree T)
{
if(!BiTreeEmpty(T)) /* 树不空 */
PostTraverse(T,0);
printf("\n");
return OK;
}
main
int main(int argc, const char * argv[]) {
// insert code here...
printf("二叉树顺序存储结构实现!\n");
Status iStatus;
Position p;
CElemType e;
SqBiTree T;
InitBiTree(T);
CreateBiTree(T);
printf("建立二叉树后,树空否?%d(1:是 0:否) \n",BiTreeEmpty(T));
printf("树的深度=%d\n",BiTreeDepth(T));
p.level=3;
p.order=2;
e=Value(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
iStatus = Root(T, &e);
if (iStatus) {
printf("二叉树的根为:%d\n",e);
}else
{
printf("树为空,无根!\n");
}
//向树中3层第2个结点位置上结点赋值99
e = 99;
Assign(T, p, e);
//获取树中3层第2个结点位置结点的值是多少:
e=Value(T,p);
printf("第%d层第%d个结点的值: %d\n",p.level,p.order,e);
//找到e这个结点的双亲;
printf("结点%d的双亲为%d_",e,Parent(T, e));
//找到e这个结点的左右孩子;
printf("左右孩子分别为:%d,%d\n",LeftChild(T, e),RightChild(T, e));
//找到e这个结点的左右兄弟;
printf("结点%d的左右兄弟:%d,%d\n",e,LeftSibling(T, e),RightSibling(T, e));
Assign(T, p, 5);
printf("二叉树T层序遍历:");
LevelOrderTraverse(T);
printf("二叉树T先序遍历:");
PreOrderTraverse(T);
printf("二叉树T中序遍历:");
InOrderTraverse(T);
printf("二叉树T后序遍历:");
PostOrderTraverse(T);
return 0;
}