Python Numpy.random.seed()作用
2018-02-13 本文已影响0人
Andrew_Yuan
今天看别的的代码中用到了 numpy.random.seed(),网上查阅后说是使用后可以在下一次生成相同的随机数,但这到底有什么用呢。
我的理解是两种程序对比,都是随机开始,这时要设置seed,让两种程序的初始条件相同,更加有利于对比,下面上代码:
import numpy as np
import matplotlib.pyplot as plt
arms = 10
# 设置seed
seed = np.random.randint(0, 100)
# max = 2.24
variance = 1
mean = np.zeros(10)
Q_table = np.zeros(10)
Q_steps = np.zeros(10)
total_steps = 20000
avg_reward = 0.0
step = 0
def walk_mean(mean):
for i in xrange(len(mean)):
if np.random.random() > 0.5:
mean[i] += 1
else:
mean[i] -= 1
return mean
def greedy_update(avg_reward, step, Q_table, mean):
mean = walk_mean(mean)
choice = np.argmax(Q_table)
step += 1
reward = np.random.normal(mean[choice], variance)
avg_reward += (reward-avg_reward)/step
Q_steps[choice] += 1
Q_table[choice] += (reward-Q_table[choice])/Q_steps[choice]
return avg_reward, step, Q_table, mean
def fix_greedy_update(avg_reward, step, Q_table, mean):
mean = walk_mean(mean)
choice = np.argmax(Q_table)
step += 1
reward = np.random.normal(mean[choice], variance)
avg_reward += (reward-avg_reward)/step
Q_steps[choice] += 1
Q_table[choice] += (reward-Q_table[choice])/10
return avg_reward, step, Q_table, mean
def e_greedy_update(avg_reward, step, Q_table, p, mean):
flag = np.random.random()
if flag <= p:
mean = walk_mean(mean)
choice = np.random.randint(0, 10)
step += 1
reward = np.random.normal(mean[choice], variance)
avg_reward += (reward-avg_reward)/step
Q_steps[choice] += 1
Q_table[choice] += (reward-Q_table[choice])/Q_steps[choice]
else:
avg_reward, step, Q_table, mean = greedy_update(avg_reward, step, Q_table, mean)
return avg_reward, step, Q_table, mean
def fix_e_greedy_update(avg_reward, step, Q_table, p, mean):
flag = np.random.random()
if flag <= p:
mean = walk_mean(mean)
choice = np.random.randint(0, 10)
step += 1
reward = np.random.normal(mean[choice], variance)
avg_reward += (reward-avg_reward)/step
Q_table[choice] += (reward-Q_table[choice])/10
else:
avg_reward, step, Q_table, mean = fix_greedy_update(avg_reward, step, Q_table, mean)
return avg_reward, step, Q_table, mean
# e-greedy with e=0.1
np.random.seed(seed)
r = []
for i in xrange(total_steps):
avg_reward, step, Q_table, mean = e_greedy_update(avg_reward, step, Q_table, 0.1, mean)
r.append(avg_reward)
print Q_table
print Q_steps
one, = plt.plot(r, label='e_greedy_0.1')
# fix-e-greedy with e=0.1
Q_table = np.zeros(10)
Q_steps = np.zeros(10)
mean = np.zeros(10)
avg_reward = 0.0
step = 0
np.random.seed(seed)
r = []
for i in xrange(total_steps):
avg_reward, step, Q_table, mean = fix_e_greedy_update(avg_reward, step, Q_table, 0.1, mean)
r.append(avg_reward)
print Q_table
print Q_steps
two, = plt.plot(r, label='fix_e_greedy_0.1')
plt.legend(handles=[one, two])
plt.show()
可以看到,在 # e-greedy with e=0.1 与 # fix-e-greedy with e=0.1下面分别调用了 np.random.seed(seed) ,这样使得 两种对比程序的初始条件相同:flag = np.random.random()。