大数据,机器学习,人工智能大数据 爬虫Python AI Sql玩转大数据

FlinkConsumer是如何保证一个partition对应一

2019-05-26  本文已影响0人  shengjk1

我们都知道flink 连接kafka时,默认是一个partition对应一个thread,它究竟是怎么实现的呢?以及到我们自己定义 RichParallelSourceFunction 的时候如何借鉴这部分代码呢?
我们一起来看一下(基于flink-1.8)
看过flink kafka连接器源码的同学对 FlinkKafkaConsumerBase 应该不陌生(没有看过的也无所谓,我们一起来看就好)
一起来看一下 FlinkKafkaConsumerBase 的 open 方法中关键的部分

//获取fixed topic's or topic pattern 's   partitions of this subtask
        final List<KafkaTopicPartition> allPartitions = partitionDiscoverer.discoverPartitions();

没错这就是查看Flink Consumer 保证 一个partition对应一个Thread的入口方法

public List<KafkaTopicPartition> discoverPartitions() throws WakeupException, ClosedException {
        if (!closed && !wakeup) {
            try {
            ...
                // (2) eliminate partition that are old partitions or should not be subscribed by this subtask
                if (newDiscoveredPartitions == null || newDiscoveredPartitions.isEmpty()) {
                    throw new RuntimeException("Unable to retrieve any partitions with KafkaTopicsDescriptor: " + topicsDescriptor);
                } else {
                    Iterator<KafkaTopicPartition> iter = newDiscoveredPartitions.iterator();
                    KafkaTopicPartition nextPartition;
                    while (iter.hasNext()) {
                        nextPartition = iter.next();
                        //从之前已经发现的KafkaTopicPartition中移除,其二可以保证仅仅是这个subtask的partition
                        if (!setAndCheckDiscoveredPartition(nextPartition)) {
                            iter.remove();
                        }
                    }
                }

                return newDiscoveredPartitions;
            ...
    }

关键性的部分 setAndCheckDiscoveredPartition 方法,点进去

public boolean setAndCheckDiscoveredPartition(KafkaTopicPartition partition) {
        if (isUndiscoveredPartition(partition)) {
            discoveredPartitions.add(partition);
            
            //kafkaPartition与indexOfThisSubTask --对应
            return KafkaTopicPartitionAssigner.assign(partition, numParallelSubtasks) == indexOfThisSubtask;
        }
        return false;
    }

indexOfThisSubtask 表示当前线程是那个subtask,numParallelSubtasks 表示总共并行的subtask 的个数, 当其返回true的时候,表示此partition 属于此indexOfThisSubtask。
下面来看一下具体是怎么划分的

public static int assign(KafkaTopicPartition partition, int numParallelSubtasks) {
        int startIndex = ((partition.getTopic().hashCode() * 31) & 0x7FFFFFFF) % numParallelSubtasks;

        // here, the assumption is that the id of Kafka partitions are always ascending
        // starting from 0, and therefore can be used directly as the offset clockwise from the start index
        return (startIndex + partition.getPartition()) % numParallelSubtasks;
    }

基于topic 和 partition,然后对numParallelSubtasks取余。

那么,当我们自己去定义RichParallelSourceFunction的时候如何去借鉴它呢,直接上代码:


public class WordSource extends RichParallelSourceFunction<Tuple2<Long, Long>> {
    
    private Boolean isRun = true;
    
    @Override
    public void run(SourceContext<Tuple2<Long, Long>> ctx) throws Exception {
        int start = 0;
        int numberOfParallelSubtasks = getRuntimeContext().getNumberOfParallelSubtasks();
        while (isRun) {
            start += 1;
            if (start % numberOfParallelSubtasks == getRuntimeContext().getIndexOfThisSubtask()) {
                ctx.collect(new Tuple2<>(
                        Long.parseLong(start+""),
                        1L));
                Thread.sleep(1000);
                System.out.println("Thread.currentThread().getName()=========== " + Thread.currentThread().getName());
            }
        }
    }
    
    @Override
    public void cancel() {
        isRun = false;
    }
}

当当当,自此,自己定义个RichParallelSourceFunction也可以并行发数据了,啦啦啦啦!

上一篇 下一篇

猜你喜欢

热点阅读