生存预测 : kaggle titanic 泰坦尼克号 逻辑回
2019-01-08 本文已影响0人
scpy
目录
- test.csv
- train.csv
- titanic.py
数据集
https://www.kaggle.com/c/titanic/data
titanic.py
# /usr/bin/python
# -*- encoding:utf-8 -*-
import xgboost as xgb
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import csv
def show_accuracy(a, b, tip):
acc = a.ravel() == b.ravel()
acc_rate = 100 * float(acc.sum()) / a.size
# print '%s正确率:%.3f%%' % (tip, acc_rate)
return acc_rate
def load_data(file_name, is_train):
data = pd.read_csv(file_name) # 数据文件路径
# print (data.describe())
# 性别
data['Sex'] = data['Sex'].map({'female': 0, 'male': 1}).astype(int)
# 补齐船票价格缺失值
if len(data.Fare[data.Fare.isnull()]) > 0:
fare = np.zeros(3)
for f in range(0, 3):
fare[f] = data[data.Pclass == f + 1]['Fare'].dropna().median()
for f in range(0, 3): # loop 0 to 2
data.loc[(data.Fare.isnull()) & (data.Pclass == f + 1), 'Fare'] = fare[f]
# 年龄:使用均值代替缺失值
# mean_age = data['Age'].dropna().mean()
# data.loc[(data.Age.isnull()), 'Age'] = mean_age
if is_train:
# 年龄:使用随机森林预测年龄缺失值
print('随机森林预测缺失年龄:--start--')
data_for_age = data[['Age', 'Survived', 'Fare', 'Parch', 'SibSp', 'Pclass']]
age_exist = data_for_age.loc[(data.Age.notnull())] # 年龄不缺失的数据
age_null = data_for_age.loc[(data.Age.isnull())]
# print age_exist
x = age_exist.values[:, 1:]
y = age_exist.values[:, 0]
rfr = RandomForestRegressor(n_estimators=1000)
rfr.fit(x, y)
age_hat = rfr.predict(age_null.values[:, 1:])
# print age_hat
data.loc[(data.Age.isnull()), 'Age'] = age_hat
print('随机森林预测缺失年龄:--over--')
else:
print('随机森林预测缺失年龄2:--start--')
data_for_age = data[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']]
age_exist = data_for_age.loc[(data.Age.notnull())] # 年龄不缺失的数据
age_null = data_for_age.loc[(data.Age.isnull())]
# print age_exist
x = age_exist.values[:, 1:]
y = age_exist.values[:, 0]
rfr = RandomForestRegressor(n_estimators=1000)
rfr.fit(x, y)
age_hat = rfr.predict(age_null.values[:, 1:])
# print age_hat
data.loc[(data.Age.isnull()), 'Age'] = age_hat
print('随机森林预测缺失年龄2:--over--')
# 起始城市
data.loc[(data.Embarked.isnull()), 'Embarked'] = 'S' # 保留缺失出发城市
# data['Embarked'] = data['Embarked'].map({'S': 0, 'C': 1, 'Q': 2, 'U': 0}).astype(int)
# print data['Embarked']
embarked_data = pd.get_dummies(data.Embarked)
# print embarked_data
# embarked_data = embarked_data.rename(columns={'S': 'Southampton', 'C': 'Cherbourg', 'Q': 'Queenstown', 'U': 'UnknownCity'})
embarked_data = embarked_data.rename(columns=lambda x: 'Embarked_' + str(x))
data = pd.concat([data, embarked_data], axis=1)
print(data.describe())
data.to_csv('New_Data.csv')
x = data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked_C', 'Embarked_Q', 'Embarked_S']]
# x = data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']]
y = None
if 'Survived' in data:
y = data['Survived']
x = np.array(x)
y = np.array(y)
x = np.tile(x, (5, 1))
y = np.tile(y, (5,))
if is_train:
return x, y
return x, data['PassengerId']
def write_result(c, c_type):
file_name = 'test.csv'
x, passenger_id = load_data(file_name, False)
if type == 3:
x = xgb.DMatrix(x)
y = c.predict(x)
y[y > 0.5] = 1
y[~(y > 0.5)] = 0
predictions_file = open("Prediction_%d.csv" % c_type, "wb")
open_file_object = csv.writer(predictions_file)
open_file_object.writerow(["PassengerId", "Survived"])
open_file_object.writerows(zip(passenger_id, y))
predictions_file.close()
if __name__ == "__main__":
x, y = load_data('train.csv', True)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=1)
lr = LogisticRegression(penalty='l2')
lr.fit(x_train, y_train)
y_hat = lr.predict(x_test)
lr_rate = show_accuracy(y_hat, y_test, 'Logistic回归 ')
# write_result(lr, 1)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(x_train, y_train)
y_hat = rfc.predict(x_test)
rfc_rate = show_accuracy(y_hat, y_test, '随机森林 ')
# write_result(rfc, 2)
# XGBoost
data_train = xgb.DMatrix(x_train, label=y_train)
data_test = xgb.DMatrix(x_test, label=y_test)
watch_list = [(data_test, 'eval'), (data_train, 'train')]
param = {'max_depth': 3, 'eta': 0.1, 'silent': 1, 'objective': 'binary:logistic'}
# 'subsample': 1, 'alpha': 0, 'lambda': 0, 'min_child_weight': 1}
bst = xgb.train(param, data_train, num_boost_round=100, evals=watch_list)
y_hat = bst.predict(data_test)
# write_result(bst, 3)
y_hat[y_hat > 0.5] = 1
y_hat[~(y_hat > 0.5)] = 0
xgb_rate = show_accuracy(y_hat, y_test, 'XGBoost ')
print('Logistic回归:%.3f%%' % lr_rate)
print('随机森林:%.3f%%' % rfc_rate)
print('XGBoost:%.3f%%' % xgb_rate)
准确率
Logistic回归:78.770%
随机森林:97.935%
XGBoost:85.772%
转载
原文作者 : lovesoft5