Java架构技术进阶

Kubernetes任务调用Job与CronJob及源码分析

2020-10-22  本文已影响0人  Java入门到入坟

推荐阅读:

在使用job中,我会结合源码进行一定的讲解,我们也可以从源码中一窥究竟,一些细节k8s是如何处理的,从而感受k8s的魅力。

Job

Job的基本使用

Job主要是用来任务调用,可以一个或多个 Pod,并确保指定数量的 Pod 可以成功执行到进程正常结束。

创建一个Job:

apiVersion: batch/v1
kind: Job
metadata:
  name: pi
spec:
  template:
    spec:
      containers:
      - name: pi
        image: perl
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never
  backoffLimit: 4

这个Job会创建一个容器,然后执行命令进行π的计算,

然后我们创建这个pod:

$ kubectl create -f job.yaml

$ kubectl describe jobs/pi

Name:           pi
Namespace:      default
Selector:       controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea
Labels:         controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea
                job-name=pi
Annotations:    Parallelism:  1
Completions:    1
...
Pods Statuses:  0 Running / 1 Succeeded / 0 Failed
Pod Template:
  Labels:  controller-uid=cf78ebe4-07f9-4234-b8f9-2fe92df352ea
           job-name=pi
  Containers:
   pi:
    Image:      resouer/ubuntu-bc
    ...
Events:
  Type    Reason            Age   From            Message
  ----    ------            ----  ----            -------
  Normal  SuccessfulCreate  29m   job-controller  Created pod: pi-g9fs4
  Normal  Completed         27m   job-controller  Job completed

可以看到创建对象后,Pod模板中,被自动加上了一个controller-uid=< 一个随机字符串 > 这样的 Label。而这个 Job 对象本身,则被自动加上了这个 Label 对应的 Selector,从而 保证了 Job 与它所管理的 Pod 之间的匹配关系。这个uid避免了不同Job对象的Pod不会重合。

$ kubectl get pod
NAME           READY   STATUS      RESTARTS   AGE
pi-g9fs4       0/1     Completed   0          33m

$ kubectl describe pod pi-g9fs4
...
Events:
  Type    Reason     Age   From                     Message
  ----    ------     ----  ----                     -------
  Normal  Scheduled  35m   default-scheduler        Successfully assigned default/pi-g9fs4 to 192.168.13.130
  Normal  Pulling    35m   kubelet, 192.168.13.130  Pulling image "resouer/ubuntu-bc"
  Normal  Pulled     35m   kubelet, 192.168.13.130  Successfully pulled image "resouer/ubuntu-bc"
  Normal  Created    35m   kubelet, 192.168.13.130  Created container pi
  Normal  Started    35m   kubelet, 192.168.13.130  Started container pi

我们可以看到Pod在创建好运行完毕之后会进入到Completed状态。上面的yaml定义中restartPolicy=Never也保证了这个Pod只会运行一次。

如果创建的Pod运行失败了,那么Job Controller会不断创建一个新的Pod:

$ kubectl get pods
NAME                                READY     STATUS              RESTARTS   AGE
pi-55h89                            0/1       ContainerCreating   0          2s
pi-tqbcz                            0/1       Error               0          5s

参数说明

spec.backoffLimit

我们在上面的字段中定义了为4,表示重试次数为4。

restartPolicy

在运行过程中,可能发生各种系统问题导致的Pod运行失败,如果设置restartPolicy为OnFailure,那么在运行中发生的失败后Job Controller会重启Pod里面的容器,而不是创建新的Pod。

还可以设置为Never,表示容器运行失败之后不会重启。

spec.activeDeadlineSeconds

表示最长运行时间,单位是秒。如:

spec:
 backoffLimit: 5
 activeDeadlineSeconds: 100

这样设置之后会进入pastActiveDeadline进行校验job.Spec.ActiveDeadlineSeconds是不是为空,不是空的话,会比较Pod的运行时间duration是否大于job.Spec.ActiveDeadlineSeconds设置的值,如果大于,那么会标记Pod终止的原因是DeadlineExceeded。

在job Controller的源码中,我们可以看到这部分的逻辑:

job Controller首先会去校验任务是不是处理次数是不是超过了BackoffLimit设置,如果没有超过的话就校验有没有设置ActiveDeadlineSeconds,如果设置了的话,就校验当前job运行时间是否超过了ActiveDeadlineSeconds设置的的时间,超过了那么会打上标记,表示这个job运行失败。

...
    jobHaveNewFailure := failed > job.Status.Failed

    exceedsBackoffLimit := jobHaveNewFailure && (active != *job.Spec.Parallelism) &&
        (int32(previousRetry)+1 > *job.Spec.BackoffLimit)

    if exceedsBackoffLimit || pastBackoffLimitOnFailure(&job, pods) {
        // check if the number of pod restart exceeds backoff (for restart OnFailure only)
        // OR if the number of failed jobs increased since the last syncJob
        jobFailed = true
        failureReason = "BackoffLimitExceeded"
        failureMessage = "Job has reached the specified backoff limit"
    } else if pastActiveDeadline(&job) {
        jobFailed = true
        failureReason = "DeadlineExceeded"
        failureMessage = "Job was active longer than specified deadline"
    }
...

func pastActiveDeadline(job *batch.Job) bool {
    if job.Spec.ActiveDeadlineSeconds == nil || job.Status.StartTime == nil {
        return false
    }
    now := metav1.Now()
    start := job.Status.StartTime.Time
    duration := now.Time.Sub(start)
    allowedDuration := time.Duration(*job.Spec.ActiveDeadlineSeconds) * time.Second
    return duration >= allowedDuration
}

Job的并行任务

在 Job 对象中,负责并行控制的参数有两个:

  1. spec.parallelism表示一个 Job 在任意时间最多可以启动多少个 Pod 同时运行;
  2. spec.completions表示Job 的最小完成数。

举例:

apiVersion: batch/v1
kind: Job
metadata:
  name: pi
spec:
  parallelism: 2
  completions: 4
  template:
    spec:
      containers:
      - name: pi
        image: perl
        command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      restartPolicy: Never
  backoffLimit: 4

在创建任务之后,我们可以看到最多只会有两个Pod同时运行:

$ kubectl get pod

NAME           READY   STATUS              RESTARTS   AGE
pi-8fsrn       0/1     ContainerCreating   0          30s
pi-job-67kwg   0/1     Completed           0          14h
pi-wlbm5       0/1     ContainerCreating   0          30s

每当有一个 Pod 完成计算进入 Completed 状态时,就会有一个新的 Pod 被自动创建出来,并且快速地从 Pending 状态进入到 ContainerCreating 状态。

最终我们可以看到job的COMPLETIONS会标记全部完成:

$ kubectl get job
NAME     COMPLETIONS   DURATION   AGE
pi       4/4           2m52s      2m52s

Job Controller中会会根据配置的并发数来确认当前处于 active 的 pods 数量是否合理,如果不合理的话则进行调整。

如果处于 active 状态的 pods 数大于 job 设置的并发数 job.Spec.Parallelism,则并发删除多余的 active pods。

Job源码分析

通过上面的使用例子,我们可以看到job的使用时非常的简单的,下面我们通过源码来理解一下这job的运行逻辑。

核心源码位置在job_controller.go中Controller类的syncJob方法中:

syncJob方法很长,我还是想要将这个方法拆开来进行说明。

Controller#syncJob

func (jm *Controller) syncJob(key string) (bool, error) {
    ...
    job := *sharedJob

    // if job was finished previously, we don't want to redo the termination
    // 如果job已经跑完了,那么直接返回,避免重跑
    if IsJobFinished(&job) {
        return true, nil
    }

    // retrieve the previous number of retry
    // 获取job的重试次数
    previousRetry := jm.queue.NumRequeues(key)

    jobNeedsSync := jm.expectations.SatisfiedExpectations(key)
    //获取这个job的pod列表
    pods, err := jm.getPodsForJob(&job)
    if err != nil {
        return false, err
    }
    //找到这个job中仍然活跃的pod
    activePods := controller.FilterActivePods(pods)
    active := int32(len(activePods))
    //获取job中运行成功的pod数和运行失败的pod数
    succeeded, failed := getStatus(pods)
    conditions := len(job.Status.Conditions)
    // job first start
    //设置job 的启动时间
    if job.Status.StartTime == nil {
        now := metav1.Now()
        job.Status.StartTime = &now
        // enqueue a sync to check if job past ActiveDeadlineSeconds
        if job.Spec.ActiveDeadlineSeconds != nil {
            klog.V(4).Infof("Job %s has ActiveDeadlineSeconds will sync after %d seconds",
                key, *job.Spec.ActiveDeadlineSeconds)
            jm.queue.AddAfter(key, time.Duration(*job.Spec.ActiveDeadlineSeconds)*time.Second)
        }
    }
    ...
}

这部分的代码会校验job是否已经跑完了,如果跑完了直接返回;

然后获取job的重试次数,以及与job关联的pod列表,并计算出活跃的pod数量、运行成功的pod数量、以及失败的pod数量;

接下来如果job是首次启动,那么需要设置job的启动时间。

继续:

func (jm *Controller) syncJob(key string) (bool, error) {
    ...
    var manageJobErr error
    jobFailed := false
    var failureReason string
    var failureMessage string
    //failed次数超过了job.Status.Failed说明有新的pod运行失败了
    jobHaveNewFailure := failed > job.Status.Failed
    // new failures happen when status does not reflect the failures and active
    // is different than parallelism, otherwise the previous controller loop
    // failed updating status so even if we pick up failure it is not a new one
    //如果有新的pod运行失败,并且活跃的pod不等于并行Parallelism数
    //并且重试次数超过了BackoffLimit
    exceedsBackoffLimit := jobHaveNewFailure && (active != *job.Spec.Parallelism) &&
        (int32(previousRetry)+1 > *job.Spec.BackoffLimit)
    //重试次数是否超标
    if exceedsBackoffLimit || pastBackoffLimitOnFailure(&job, pods) {
        // check if the number of pod restart exceeds backoff (for restart OnFailure only)
        // OR if the number of failed jobs increased since the last syncJob
        jobFailed = true
        failureReason = "BackoffLimitExceeded"
        failureMessage = "Job has reached the specified backoff limit"
    //  job运行时间是否超过了ActiveDeadlineSeconds
    } else if pastActiveDeadline(&job) {
        jobFailed = true
        failureReason = "DeadlineExceeded"
        failureMessage = "Job was active longer than specified deadline"
    }
    ...
}

这段代码是用来判断job是否运行失败,判断依据是job重试次数是否超过了BackoffLimit,以及job的运行时间是否超过了设置的ActiveDeadlineSeconds。

上面这里会获取上一次运行的Failed次数和这次的job的failed次数进行比较,如果failed多了表示又产生了新的运行失败的pod。如果运行失败会标识出失败原因,以及设置jobFailed为true。

在上面的代码中调用了pastBackoffLimitOnFailure方法和pastActiveDeadline方法,我们分别看一下:

pastBackoffLimitOnFailure

func pastBackoffLimitOnFailure(job *batch.Job, pods []*v1.Pod) bool {
    //如果RestartPolicy为OnFailure,那么直接返回
    if job.Spec.Template.Spec.RestartPolicy != v1.RestartPolicyOnFailure {
        return false
    }
    result := int32(0)
    for i := range pods {
        po := pods[i]
        //如果pod状态为Running或Pending
        //获取到pod对应的重启次数以及Container状态,包含pod中的InitContainer
        if po.Status.Phase == v1.PodRunning || po.Status.Phase == v1.PodPending {
            for j := range po.Status.InitContainerStatuses {
                stat := po.Status.InitContainerStatuses[j]
                result += stat.RestartCount
            }
            for j := range po.Status.ContainerStatuses {
                stat := po.Status.ContainerStatuses[j]
                result += stat.RestartCount
            }
        }
    }
    //如果BackoffLimit等于,那么只要重启了一次,则返回true
    if *job.Spec.BackoffLimit == 0 {
        return result > 0
    }
    //比较重启次数是否超过了BackoffLimit
    return result >= *job.Spec.BackoffLimit
}

这个方法会校验job的RestartPolicy策略,不是OnFailure才继续往下执行。然后会遍历pod列表,将pod列表中的重启次数累加并与BackoffLimit进行比较,超过了则返回true。

pastActiveDeadline

func pastActiveDeadline(job *batch.Job) bool {
    if job.Spec.ActiveDeadlineSeconds == nil || job.Status.StartTime == nil {
        return false
    }
    now := metav1.Now()
    start := job.Status.StartTime.Time
    duration := now.Time.Sub(start)
    allowedDuration := time.Duration(*job.Spec.ActiveDeadlineSeconds) * time.Second
    return duration >= allowedDuration
}

这个方法会算出job的运行时间duration,然后和ActiveDeadlineSeconds进行比较,如果超过了则返回true。

我们回到syncJob中继续往下:

func (jm *Controller) syncJob(key string) (bool, error) {
    ...
    //job运行失败
    if jobFailed {
        errCh := make(chan error, active)
        //将job里面的active的pod删除
        jm.deleteJobPods(&job, activePods, errCh)
        select {
        case manageJobErr = <-errCh:
            if manageJobErr != nil {
                break
            }
        default:
        }

        // update status values accordingly
        //清空active数
        failed += active
        active = 0
        job.Status.Conditions = append(job.Status.Conditions, newCondition(batch.JobFailed, failureReason, failureMessage))
        jm.recorder.Event(&job, v1.EventTypeWarning, failureReason, failureMessage)
    } else {
        //如果job需要同步,并且job没有被删除,则调用manageJob进行同步工作
        if jobNeedsSync && job.DeletionTimestamp == nil {
            active, manageJobErr = jm.manageJob(activePods, succeeded, &job)
        }
        //完成数等于pod 运行成功的数量
        completions := succeeded
        complete := false
        //如果没有设置Completions,那么只要有pod完成,那么job就算完成
        if job.Spec.Completions == nil {
            if succeeded > 0 && active == 0 {
                complete = true
            }
        } else {
            //如果实际完成数大于或等于Completions
            if completions >= *job.Spec.Completions {
                complete = true
                //如果还有pod处于active状态,发送EventTypeWarning事件
                if active > 0 {
                    jm.recorder.Event(&job, v1.EventTypeWarning, "TooManyActivePods", "Too many active pods running after completion count reached")
                }
                //如果实际完成数大于Completions,发送EventTypeWarning事件
                if completions > *job.Spec.Completions {
                    jm.recorder.Event(&job, v1.EventTypeWarning, "TooManySucceededPods", "Too many succeeded pods running after completion count reached")
                }
            }
        }
        //job完成了则更新 job.Status.Conditions 和 job.Status.CompletionTime 字段
        if complete {
            job.Status.Conditions = append(job.Status.Conditions, newCondition(batch.JobComplete, "", ""))
            now := metav1.Now()
            job.Status.CompletionTime = &now
            jm.recorder.Event(&job, v1.EventTypeNormal, "Completed", "Job completed")
        }
    }
    ...
}

这一段中会根据jobFailed的状态进行判断。

如果jobFailed为true则表示这个job运行失败,需要删除这个job关联的所有pod,并且清空active数。

如果jobFailed为false则表示这个job处于非false状态。如果job需要同步,并且job没有被删除,则调用manageJob进行同步工作;

接下来会对设置的Completions进行处理,如果Completions没有设置,那么只要有一个pod运行完毕,那么这个pod就算完成;

如果实际完成的pod数量大于completions或仍然有pod处于active中,则发送相应的事件信息。最后更新job的状态为完成。

我们接下来一口气看看manageJob中这个同步方法里面做了什么,这个方法是job管理pod运行数量的核心方法:

Controller#manageJob

func (jm *Controller) manageJob(activePods []*v1.Pod, succeeded int32, job *batch.Job) (int32, error) {
    ...
    //如果处于 active 状态的 pods 数大于 job 设置的并发数 job.Spec.Parallelism
    if active > parallelism {
        //多出的个数
        diff := active - parallelism
        errCh = make(chan error, diff)
        jm.expectations.ExpectDeletions(jobKey, int(diff))
        klog.V(4).Infof("Too many pods running job %q, need %d, deleting %d", jobKey, parallelism, diff) 
        //pods 排序,以便可以优先删除一些pod:
        // 判断 pod 状态:Not ready < ready
        // 是否已经被调度:unscheduled< scheduled
        //判断 pod phase :pending < running
        sort.Sort(controller.ActivePods(activePods))

        active -= diff
        wait := sync.WaitGroup{}
        wait.Add(int(diff))
        for i := int32(0); i < diff; i++ {
            //并发删除多余的 active pods
            go func(ix int32) {
                defer wait.Done()
                if err := jm.podControl.DeletePod(job.Namespace, activePods[ix].Name, job); err != nil {
                    // Decrement the expected number of deletes because the informer won't observe this deletion
                    jm.expectations.DeletionObserved(jobKey)
                    if !apierrors.IsNotFound(err) {
                        klog.V(2).Infof("Failed to delete %v, decremented expectations for job %q/%q", activePods[ix].Name, job.Namespace, job.Name)
                        activeLock.Lock()
                        active++
                        activeLock.Unlock()
                        errCh <- err
                        utilruntime.HandleError(err)
                    }

                }
            }(i)
        }
        wait.Wait()
    //若处于 active 状态的 pods 数小于 job 设置的并发数,则需要创建出新的 pod
    } else if active < parallelism {
        wantActive := int32(0)
        //如果没有声明Completions,那么active的pod应该等于parallelism,如果有pod已经完成了,那么不再创建新的。
        if job.Spec.Completions == nil { 
            if succeeded > 0 {
                wantActive = active
            } else {
                wantActive = parallelism
            }
        //  如果声明了Completions,那么需要比较Completions和succeeded
        // 如果wantActive大于parallelism,那么需要创建的Pod数等于parallelism
        } else {
            // Job specifies a specific number of completions.  Therefore, number
            // active should not ever exceed number of remaining completions.
            wantActive = *job.Spec.Completions - succeeded
            if wantActive > parallelism {
                wantActive = parallelism
            }
        }
        //计算出 diff 数
        diff := wantActive - active
        if diff < 0 {
            utilruntime.HandleError(fmt.Errorf("More active than wanted: job %q, want %d, have %d", jobKey, wantActive, active))
            diff = 0
        }
        //表示已经有足够的pod,不需要再创建了
        if diff == 0 {
            return active, nil
        }
        jm.expectations.ExpectCreations(jobKey, int(diff))
        errCh = make(chan error, diff)
        klog.V(4).Infof("Too few pods running job %q, need %d, creating %d", jobKey, wantActive, diff)

        active += diff
        wait := sync.WaitGroup{}

        //创建的 pod 数依次为 1、2、4、8......,呈指数级增长
        for batchSize := int32(integer.IntMin(int(diff), controller.SlowStartInitialBatchSize)); diff > 0; batchSize = integer.Int32Min(2*batchSize, diff) {
            errorCount := len(errCh)
            wait.Add(int(batchSize))
            for i := int32(0); i < batchSize; i++ {
                //并发程创建pod
                go func() {
                    defer wait.Done()
                    //创建pod
                    err := jm.podControl.CreatePodsWithControllerRef(job.Namespace, &job.Spec.Template, job, metav1.NewControllerRef(job, controllerKind))
                    if err != nil {
                        ...
                    }
                    //创建失败的处理
                    if err != nil {
                        defer utilruntime.HandleError(err) 
                        klog.V(2).Infof("Failed creation, decrementing expectations for job %q/%q", job.Namespace, job.Name)
                        jm.expectations.CreationObserved(jobKey)
                        activeLock.Lock()
                        active--
                        activeLock.Unlock()
                        errCh <- err
                    }
                }()
            }
            wait.Wait()
            ...
            diff -= batchSize
        }
    } 
    ... 
    return active, nil
}

这个方法的逻辑十分的清晰,我们下面撸一撸~

这段代码在开始用一个if判断来校验active的pod是否超过了parallelism,如果超过了需要算出超过了多少,存在diff字段中;然后需要删除多余的pod,不过这个时候有个细节的地方,这里会根据pod的状态进行排序,会首先删除一些不是ready状态、unscheduled、pending状态的pod;

若active的pod小于parallelism,那么首先需要判断Completions,如果没有被设置,并且已经有pod运行成功了,那么不需要创建新的pod,否则还是需要创建pod至parallelism指定个数;如果设置了Completions,那么还需要根据pod完成的数量来做一个判断需要创建多少新的pod;

如果需要创建的pod数小于active的pod数,那么直接返回即可;

接下来会在一个for循环中循环并发创建pod,不过创建的数量是依次指数递增,避免一下子创建太多pod。

定时任务CronJob

基本使用

我们从一个例子开始,如下:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
  name: hello
spec:
  schedule: "*/1 * * * *"
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: busybox
            args:
            - /bin/sh
            - -c
            - date; echo Hello from the Kubernetes cluster
          restartPolicy: OnFailure

这个CronJob会每分钟创建一个Pod:

$ kubectl get pod

NAME                     READY   STATUS              RESTARTS   AGE
hello-1596406740-tqnlb   0/1     ContainerCreating   0          8s

cronjob会记录最近的调度时间:

$ kubectl get cronjob hello

NAME    SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE
hello   */1 * * * *   False     1        16s             2m33s

spec.concurrencyPolicy

如果设置的间隔时间太短,那么可能会导致任务还没执行完成又创建了新的Pod。所以我们可以通过修改spec.concurrencyPolicy来定义处理策略:

如果某一次 Job 创建失败,这次创建就会被标记为“miss”。当在指定的时间窗口内,miss 的数目达到 100 时,那么 CronJob 会停止再创建这个 Job。

spec.startingDeadlineSeconds可以指定这个时间窗口。startingDeadlineSeconds=200意味着过去 200 s 里,如果 miss 的数目达到了 100 次,那么这个 Job 就不会被创建执行了。

cronjob源码分析

CronJob的源码在cronjob_controller.go中,主要实现是在Controller的syncAll方法中。

下面我们看看CronJob是在源码中如何创建运行的:

Controller#syncAll

func (jm *Controller) syncAll() { 
    //列出所有的job
    jobListFunc := func(opts metav1.ListOptions) (runtime.Object, error) {
        return jm.kubeClient.BatchV1().Jobs(metav1.NamespaceAll).List(context.TODO(), opts)
    } 
    js := make([]batchv1.Job, 0)
    //遍历jobListFunc然后将状态正常的job放入到js集合中
    err := pager.New(pager.SimplePageFunc(jobListFunc)).EachListItem(context.Background(), metav1.ListOptions{}, func(object runtime.Object) error {
        jobTmp, ok := object.(*batchv1.Job)
        if !ok {
            return fmt.Errorf("expected type *batchv1.Job, got type %T", jobTmp)
        }
        js = append(js, *jobTmp)
        return nil
    })
    ...
    //列出所有的cronJobs
    cronJobListFunc := func(opts metav1.ListOptions) (runtime.Object, error) {
        return jm.kubeClient.BatchV1beta1().CronJobs(metav1.NamespaceAll).List(context.TODO(), opts)
    }
    //遍历所有的jobs,根据ObjectMeta.OwnerReference字段确定该job是否由cronJob所创建
    //key为uid,value为job集合
    jobsByCj := groupJobsByParent(js)
    klog.V(4).Infof("Found %d groups", len(jobsByCj))
    //遍历cronJobs
    err = pager.New(pager.SimplePageFunc(cronJobListFunc)).EachListItem(context.Background(), metav1.ListOptions{}, func(object runtime.Object) error {
        cj, ok := object.(*batchv1beta1.CronJob)
        if !ok {
            return fmt.Errorf("expected type *batchv1beta1.CronJob, got type %T", cj)
        }
        //进行同步
        syncOne(cj, jobsByCj[cj.UID], time.Now(), jm.jobControl, jm.cjControl, jm.recorder)
        //清理所有已经完成的jobs
        cleanupFinishedJobs(cj, jobsByCj[cj.UID], jm.jobControl, jm.cjControl, jm.recorder)
        return nil
    })

    if err != nil {
        utilruntime.HandleError(fmt.Errorf("Failed to extract cronJobs list: %v", err))
        return
    }
}

syncAll方法会列出所有job以及对应的cronJobs,然后按照cronJobs来进行归类,然后遍历这个列表调用syncOne方法进行同步,之后再调用cleanupFinishedJobs清理所有已经完成的jobs。

然后我们在看看syncOne是具体怎么处理job的:

syncOne

func syncOne(cj *batchv1beta1.CronJob, js []batchv1.Job, now time.Time, jc jobControlInterface, cjc cjControlInterface, recorder record.EventRecorder) {
    nameForLog := fmt.Sprintf("%s/%s", cj.Namespace, cj.Name)

    childrenJobs := make(map[types.UID]bool)
    //遍历job列表
    for _, j := range js {
        childrenJobs[j.ObjectMeta.UID] = true
        //查看这个job是否是在Active列表中
        found := inActiveList(*cj, j.ObjectMeta.UID)
        //如果这个job不是在Active列表中,并且这个job还没有跑完,发送一个异常事件。
        if !found && !IsJobFinished(&j) {
            recorder.Eventf(cj, v1.EventTypeWarning, "UnexpectedJob", "Saw a job that the controller did not create or forgot: %s", j.Name) 
        //  如果该job在Active列表中,并且已经跑完了,那么从Active列表移除
        } else if found && IsJobFinished(&j) {
            _, status := getFinishedStatus(&j)
            deleteFromActiveList(cj, j.ObjectMeta.UID)
            recorder.Eventf(cj, v1.EventTypeNormal, "SawCompletedJob", "Saw completed job: %s, status: %v", j.Name, status)
        }
    }

    //反向再遍历Active列表,如果存在上面记录的jobs,那么就移除
    for _, j := range cj.Status.Active {
        if found := childrenJobs[j.UID]; !found {
            recorder.Eventf(cj, v1.EventTypeNormal, "MissingJob", "Active job went missing: %v", j.Name)
            deleteFromActiveList(cj, j.UID)
        }
    }
    //上面做了cronJob的Active列表的修改,所以需要更新一下状态
    updatedCJ, err := cjc.UpdateStatus(cj)
    if err != nil {
        klog.Errorf("Unable to update status for %s (rv = %s): %v", nameForLog, cj.ResourceVersion, err)
        return
    }
    *cj = *updatedCJ
    //cronJob已经被删除了,直接返回
    if cj.DeletionTimestamp != nil { 
        return
    }
    //cronJob处于suspend,直接返回
    if cj.Spec.Suspend != nil && *cj.Spec.Suspend {
        klog.V(4).Infof("Not starting job for %s because it is suspended", nameForLog)
        return
    }
    //获取最近的调度时间
    times, err := getRecentUnmetScheduleTimes(*cj, now)
    if err != nil {
        recorder.Eventf(cj, v1.EventTypeWarning, "FailedNeedsStart", "Cannot determine if job needs to be started: %v", err)
        klog.Errorf("Cannot determine if %s needs to be started: %v", nameForLog, err)
        return
    } 
    //等于0说明还没有开始调度
    if len(times) == 0 {
        klog.V(4).Infof("No unmet start times for %s", nameForLog)
        return
    }
    if len(times) > 1 {
        klog.V(4).Infof("Multiple unmet start times for %s so only starting last one", nameForLog)
    }
    //获取列表中的最后一次时间
    scheduledTime := times[len(times)-1]
    tooLate := false
    //如果设置了StartingDeadlineSeconds,那么计算是否满足条件
    if cj.Spec.StartingDeadlineSeconds != nil {
        tooLate = scheduledTime.Add(time.Second * time.Duration(*cj.Spec.StartingDeadlineSeconds)).Before(now)
    }
    if tooLate {
        klog.V(4).Infof("Missed starting window for %s", nameForLog)
        recorder.Eventf(cj, v1.EventTypeWarning, "MissSchedule", "Missed scheduled time to start a job: %s", scheduledTime.Format(time.RFC1123Z)) 
        return
    }
    //处理concurrencyPolicy策略
    //如果设置的是Forbid,并且Active列表大于0,直接return
    if cj.Spec.ConcurrencyPolicy == batchv1beta1.ForbidConcurrent && len(cj.Status.Active) > 0 { 
        klog.V(4).Infof("Not starting job for %s because of prior execution still running and concurrency policy is Forbid", nameForLog)
        return
    }
    //如果设置的是Replace,则删除所有的Active列表,等后面重新创建
    if cj.Spec.ConcurrencyPolicy == batchv1beta1.ReplaceConcurrent {
        for _, j := range cj.Status.Active {
            klog.V(4).Infof("Deleting job %s of %s that was still running at next scheduled start time", j.Name, nameForLog)

            job, err := jc.GetJob(j.Namespace, j.Name)
            if err != nil {
                recorder.Eventf(cj, v1.EventTypeWarning, "FailedGet", "Get job: %v", err)
                return
            }
            if !deleteJob(cj, job, jc, recorder) {
                return
            }
        }
    }
    //根据cronJob.spec.JobTemplate填充job的完整信息
    jobReq, err := getJobFromTemplate(cj, scheduledTime)
    if err != nil {
        klog.Errorf("Unable to make Job from template in %s: %v", nameForLog, err)
        return
    }
    //创建job
    jobResp, err := jc.CreateJob(cj.Namespace, jobReq)
    if err != nil { 
        if !errors.HasStatusCause(err, v1.NamespaceTerminatingCause) {
            recorder.Eventf(cj, v1.EventTypeWarning, "FailedCreate", "Error creating job: %v", err)
        }
        return
    }
    klog.V(4).Infof("Created Job %s for %s", jobResp.Name, nameForLog)
    recorder.Eventf(cj, v1.EventTypeNormal, "SuccessfulCreate", "Created job %v", jobResp.Name)

    ref, err := getRef(jobResp)
    if err != nil {
        klog.V(2).Infof("Unable to make object reference for job for %s", nameForLog)
    } else {
        //把创建好的job信息放入到Active列表中
        cj.Status.Active = append(cj.Status.Active, *ref)
    }
    cj.Status.LastScheduleTime = &metav1.Time{Time: scheduledTime}
    if _, err := cjc.UpdateStatus(cj); err != nil {
        klog.Infof("Unable to update status for %s (rv = %s): %v", nameForLog, cj.ResourceVersion, err)
    }

    return
}

在syncOne维护了cronJob的Active列表,在遍历cronJob对应的job列表的时候会判断该job是不是应该从Active列表中删除,操作完之后会更新cronJob的状态。

然后会查看当前的cronJob是否已被删除、是否处于suspend状态、判断是否最近有job被调度,并获取最后一次调度时间判断是否满足StartingDeadlineSeconds条件等。

接下来会根据ConcurrencyPolicy来判断是Forbid还是Replace。如果是Forbid那么直接略过此次调度,如果是Replace那么会删除所有的Active列表,等后面重新创建。

最后调用CreateJob创建job。

总结

这篇文章我们首先介绍了Job和CronJob的具体使用方法,以及其中需要注意的参数配置,然后通过源码来解释相应的配置会产生什么样的结果。例如job来说,如果我们设置的completions小于parallelism,那么在实际运行的时候实际完成的pod数量是可能超过completions的等等。通过源码我们对job以及cronjob也有了一个更好的理解。

上一篇下一篇

猜你喜欢

热点阅读