基于Spark的电影推荐系统(推荐系统~1)

2019-10-21  本文已影响0人  留歌_36

第四部分-推荐系统-项目介绍

行业背景:

快速:Apache Spark以内存计算为核心
通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算
完整的生态圈
只要掌握Spark,就能够为大多数的企业的大数据应用场景提供明显的加速

“猜你喜欢”为代表的推荐系统,从吃穿住行等

项目背景介绍:

本项目是一个基于Apache Spark 的电影推荐系统,
技术路线:离线推荐+实时推荐

项目架构:

在这里插入图片描述

主要模块:

系统开发的重难点:

数据仓库的准备 :Spark + Hive 数据ETL  ,Zeppelin +Hive 数据展示 
数据处理:
实时数据处理 : 1.数据实时性,完整性 、一致性 ,
                2.保证应用不会崩溃掉,or 崩掉之后及时启动起来 并 数据一致性处理

拓展:

1.数据仓库怎么理解?两种东西,其一是IBM微软数据产品为代表的,其二是Hadoop+Hive
Apache Hive™数据仓库软件有助于使用SQL读取,写入和管理驻留在分布式存储中的大型数据集。
可以将结构投影到已经存储的数据上。
提供了命令行工具和JDBC驱动程序以将用户连接到Hive。

2.数据源准备:
Data Source:Movielens Open Data
http://files.grouplens.org/datasets/movielens
http://files.grouplens.org/datasets/movielens/ml-latest.zip

[root@hadoop001 ml-latest]# pwd
/root/data/ml/ml-latest
[root@hadoop001 ml-latest]# ll -h
总用量 1.9G
-rw-r--r--. 1 root root 1.3M 10月 17 13:41 links.txt
-rw-r--r--. 1 root root 2.8M 10月 17 16:06 movies.txt
-rw-r--r--. 1 root root 725M 10月 17 16:07 ratings.txt
-rw-r--r--. 1 root root  38M 10月 17 16:08 tags.txt
[root@hadoop001 ml-latest]# 

接下来就是开始Coding...

有任何问题,欢迎留言一起交流~~
更多文章:基于Spark的电影推荐系统:https://blog.csdn.net/liuge36/column/info/29285

上一篇下一篇

猜你喜欢

热点阅读