hadoop集群快速部署
1. 修改Linux主机名
hostnamectl set-hostname dhf1
或修改配置文件
vim /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=dhf1
2. 修改IP
vim /etc/sysconfig/network-scripts/ifcfg-eth0
systemctl restart network
3. 修改主机名和IP的映射关系
vim /etc/hosts
192.xxx.xxx.227 dhf1
192.xxx.xxx.228 dhf2
192.xxx.xxx.229 dhf3
192.xxx.xxx.230 dhf4
192.xxx.xxx.231 dhf5
192.xxx.xxx.232 dhf6
192.xxx.xxx.233 dhf7
4.关闭防火墙
systemctl status firewalld
systemctl stop firewalld
systemctl disable firewalld
5.ssh免登陆
ssh-keygen -t rsa
(四个回车)执行完这个命令后,会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥)将公钥拷贝到要免登陆的机器上(包括本机器):
ssh-copy-id dhf1
需要生成公钥的机器 | 需要拷贝到的机器 |
---|---|
dhf1 | dhf1、dhf2、dhf3、dhf4、dhf5、dhf6、dhf7 |
dhf2 | dhf1、dhf2 |
dhf3 | dhf3、dhf4、dhf5、dhf6、dhf7 |
6. 安装JDK,配置环境变量等
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.272.b10-1.el7_9.x86_64
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
source /etc/profile
7. 重启机器
Reboot
8.集群规划
主机名 | IP | 安装的软件 | 运行的进程 |
---|---|---|---|
dhf1 | 192.xxx.xxx.227 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
dhf2 | 192.xxx.xxx.228 | jdk、hadoop | NameNode、DFSZKFailoverController(zkfc) |
dhf3 | 192.xxx.xxx.229 | jdk、hadoop | ResourceManager |
dhf4 | 192.xxx.xxx.230 | jdk、hadoop | ResourceManager |
dhf5 | 192.xxx.xxx.231 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
dhf6 | 192.xxx.xxx.232 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
dhf7 | 192.xxx.xxx.233 | jdk、hadoop、zookeeper | DataNode、NodeManager、JournalNode、QuorumPeerMain |
说明:在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。hadoop官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode。这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态。两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调。把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动。
9.安装zookeeper
9.1.安装配置zooekeeper集群
(在dhf5上操作)
cd /cdc/apache-zookeeper-3.5.8-bin/conf/
cp zoo_sample.cfg zoo.cfg
修改:zoo.cfg
vim zoo.cfg
dataDir=/cdc/apache-zookeeper-3.5.8-bin/tmp
server.1=dhf5:2888:3888
server.2=dhf6:2888:3888
server.3=dhf7:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir /cdc/apache-zookeeper-3.5.8-bin/tmp
再创建一个空文件
touch /cdc/apache-zookeeper-3.5.8-bin/tmp/myid
最后向该文件写入ID
echo 1 > /cdc/apache-zookeeper-3.5.8-bin/tmp/myid
9.2将配置好的zookeeper拷贝到其他节点
scp -r /cdc/apache-zookeeper-3.5.8-bin/ dhf6:/cdc/
scp -r /cdc/apache-zookeeper-3.5.8-bin/ dhf7:/cdc/
注意:修改dhf6、dhf7对应/cdc/apache-zookeeper-3.5.8-bin/tmp/myid内容
dhf6:
echo 2 > /cdc/apache-zookeeper-3.5.8-bin/tmp/myid
dhf7:
echo 3 > /cdc/apache-zookeeper-3.5.8-bin/tmp/myid
10.安装hadoop
10.1安装配置hadoop集群
(在dhf1上操作)
10.1.1将hadoop添加到环境变量中
vim /etc/profile
export HADOOP_HOME=/cdc/hadoop-3.3.0
export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin:$HADOOP_HOME/bin
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root
export HDFS_JOURNALNODE_USER=root
export HDFS_ZKFC_USER=root
10.1.2配置HDFS
(hadoop所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
首先通过hadoop classpath命令获取HADOOP_CLASSPATH,如下:
/cdc/hadoop-3.3.0/etc/hadoop:/cdc/hadoop-3.3.0/share/hadoop/common/lib/*:/cdc/hadoop-3.3.0/share/hadoop/common/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs:/cdc/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs/*:/cdc/hadoop-3.3.0/share/hadoop/mapreduce/*:/cdc/hadoop-3.3.0/share/hadoop/yarn:/cdc/hadoop-3.3.0/share/hadoop/yarn/lib/*:/cdc/hadoop-3.3.0/share/hadoop/yarn/*
10.1.2.1修改hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.272.b10-1.el7_9.x86_64
export HADOOP_CLASSPATH=/cdc/hadoop-3.3.0/etc/hadoop:/cdc/hadoop-3.3.0/share/hadoop/common/lib/*:/cdc/hadoop-3.3.0/share/hadoop/common/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs:/cdc/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs/*:/cdc/hadoop-3.3.0/share/hadoop/mapreduce/*:/cdc/hadoop-3.3.0/share/hadoop/yarn:/cdc/hadoop-3.3.0/share/hadoop/yarn/lib/*:/cdc/hadoop-3.3.0/share/hadoop/yarn/*
10.1.2.2修改core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为ns1 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1</value>
</property>
<!-- 指定hadoop临时目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/cdc/hadoop-3.3.0/tmp</value>
</property>
<!-- 指定zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>dhf5:2181,dhf6:2181,dhf7:2181</value>
</property>
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>
</configuration>
10.1.2.3修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>dhf1:9000</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>dhf1:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>dhf2:9000</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>dhf2:50070</value>
</property>
<!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://dhf5:8485;dhf6:8485;dhf7:8485/ns1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/cdc/hadoop-3.3.0/journal</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 配置失败自动切换实现方式 -->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
• sshfence
• shell(/bin/true)
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
10.1.2.4修改mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
</property>
</configuration>
10.1.2.5修改yarn-site.xml
<configuration>
<!-- 开启RM高可靠 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>dhf3</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>dhf4</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>dhf3:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>dhf4:8088</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>dhf5:2181,dhf6:2181,dhf7:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.application.classpath</name>
<value>/cdc/hadoop-3.3.0/etc/hadoop:/cdc/hadoop-3.3.0/share/hadoop/common/lib/*:/cdc/hadoop-3.3.0/share/hadoop/common/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs:/cdc/hadoop-3.3.0/share/hadoop/hdfs/lib/*:/cdc/hadoop-3.3.0/share/hadoop/hdfs/*:/cdc/hadoop-3.3.0/share/hadoop/mapreduce/*:/cdc/hadoop-3.3.0/share/hadoop/yarn:/cdc/hadoop-3.3.0/share/hadoop/yarn/lib/*:/cdc/hadoop-3.3.0/share/hadoop/yarn/*</value>
</property> XML
</configuration>
10.1.2.6修改workers(workers)
(workers 是指定子节点的位置,因为要在dhf1上启动HDFS、在dhf3启动yarn,所以dhf1上的workers 文件指定的是datanode的位置,dhf3上的workers 文件指定的是nodemanager的位置)
vim workers
dhf5
dhf6
dhf7
10.2将配置好的hadoop拷贝到其他节点
scp -r /cdc/hadoop-3.3.0/ root@dhf2:/cdc/
scp -r /cdc/hadoop-3.3.0/ root@dhf3:/cdc/
scp -r /cdc/hadoop-3.3.0/ root@dhf4:/cdc/
scp -r /cdc/hadoop-3.3.0/ root@dhf5:/cdc/
scp -r /cdc/hadoop-3.3.0/ root@dhf6:/cdc/
scp -r /cdc/hadoop-3.3.0/ root@dhf7:/cdc/
11.启动服务
11.1启动zookeeper集群
(分别在dhf5、dhf6、dhf7上启动zk)(QuorumPeerMain)
cd /cdc/apache-zookeeper-3.5.8-bin/bin/
./zkServer.sh start
查看状态:一个leader,两个follower
./zkServer.sh status
11.2启动journalnode
cd /cdc/hadoop-3.3.0/;rm -rf journal/ns1/;rm -rf logs/; rm -rf tmp/;
(分别在在dhf5、dhf6、tcast07上执行)
cd /cdc/hadoop-3.3.0/sbin/
./hadoop-daemon.sh start journalnode
运行jps命令检验,dhf5、dhf6、dhf7上多了JournalNode进程
11.3格式化HDFS
(在dhf1上执行命令)
hdfs namenode -format
格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/cdc/hadoop-3.3.0/tmp,然后将/cdc/hadoop-3.3.0/tmp拷贝到dhf2的/cdc/hadoop-3.3.0/下。
scp -r /cdc/hadoop-3.3.0/tmp/ root@dhf2:/cdc/hadoop-3.3.0/
11.4格式化ZK
(在dhf1上执行)
hdfs zkfc -formatZK
11.5启动HDFS
(在dhf1上执行)
cd /cdc/hadoop-3.3.0/sbin/
./start-dfs.sh
11.6启动YARN
(在dhf3上执行)
cd /cdc/hadoop-3.3.0/sbin/
./start-yarn.sh
12.验证
NameNode 'dhf2:9000' (active)
NameNode 'dhf1:9000' (standby)
image查看datanode节点状态全部上线
image首先向hdfs上传一个文件
hadoop fs -mkdir /dhf
hadoop fs -put /test.txt /dhf
hadoop fs -ls /dhf
image
然后再kill掉active的NameNode(dhf2)
kill -9 16950
通过浏览器访问:http://192.xxx.xxx.227:50070
NameNode 'dhf1:9000' (active)
这个时候dhf1上的NameNode变成了active
hadoop fs -ls /dhf
刚才上传的文件依然存在
image手动启动那个挂掉的NameNode
./hadoop-daemon.sh start namenode
通过浏览器访问:http://192.xxx.xxx.228:50070
NameNode 'dhf2:9000' (standby)