ResNet-50 结构
2019-04-12 本文已影响0人
D_Major
ResNet有2个基本的block,一个是Identity Block,输入和输出的dimension是一样的,所以可以串联多个;另外一个基本block是Conv Block,输入和输出的dimension是不一样的,所以不能连续串联,它的作用本来就是为了改变特征向量的dimension
因为CNN最后都是要把输入图像一点点的转换成很小但是depth很深的feature map,一般的套路是用统一的比较小的kernel(比如VGG都是用3*3),但是随着网络深度的增加,output的channel也增大(学到的东西越来越复杂),所以有必要在进入Identity Block之前,用Conv Block转换一下维度,这样后面就可以连续接Identity Block.
Conv Block:
Identity Block:
其实就是在shortcut path的地方加上一个conv2D layer(1*1 filter size),然后在main path改变dimension,并与shortcut path对应起来.
ResNetV1-50流程如下, 不使用bottleneck, 且只有resnetv1在initial_conv后面做BN和Relu:
block_sizes=[3, 4, 6, 3]指的是stage1(first pool)之后的4个layer的block数, 分别对应res2,res3,res4,res5,
每一个layer的第一个block在shortcut上做conv+BN, 即Conv Block
inputs: (1, 720, 1280, 3)
initial_conv:
conv2d_fixed_padding()
1. kernel_size=7, 先做padding(1, 720, 1280, 3) -> (1, 726, 1286, 3)
2. conv2d kernels=[7, 7, 3, 64], stride=2, VALID 卷积. 7x7的kernel, padding都为3, 为了保证左上角和卷积核中心点对其
(1, 726, 1286, 3) -> (1, 360, 640, 64)
3. BN, Relu (只有resnetv1在第一次conv后面做BN和Relu)
initial_max_pool:
k=3, s=2, padding='SAME', (1, 360, 640, 64) -> (1, 180, 320, 64)
以下均为不使用bottleneck的building_block
block_layer1:
(有3个block, layer间stride=1(上一层做pool了), 64个filter, 不使用bottleneck(若使用bottleneck 卷积核数量需乘4))
1. 第一个block:
Conv Block有projection_shortcut, 且strides可以等于1或者2
Identity Block没有projection_shortcut, 且strides只能等于1
`inputs = block_fn(inputs, filters, training, projection_shortcut, strides, data_format)`
shortcut做[1, 1, 64, 64], stride=1的conv和BN, shape不变
然后和主要分支里input做3次卷积后的结果相加, 一起Relu, 注意block里最后一次卷积后只有BN没有Relu
input: conv-bn-relu-conv-bn-relu-conv-bn 和shortcut相加后再做relu
shortcut: conv-bn
shortcut: [1, 1, 64, 64], s=1, (1, 180, 320, 64) -> (1, 180, 320, 64)
input做两次[3, 3, 64, 64], s=1的卷积, shape不变(1, 180, 320, 64) -> (1, 180, 320, 64) -> (1, 180, 320, 64)
inputs += shortcut, 再relu
2. 对剩下的2个block, 每个block操作相同:
`inputs = block_fn(inputs, filters, training, None, 1, data_format)`
shortcut直接和input卷积结果相加, 不做conv-bn
input做两次[3, 3, 64, 64], s=1的卷积, shape不变(1, 180, 320, 64) -> (1, 180, 320, 64) -> (1, 180, 320, 64)
inputs += shortcut, 再relu
block_layer2/3/4同block_layer1, 只是每个layer的identity block数量不同, 卷积核数量和layer间stride也不同, 不过仍然只有第一个conv block的shortcut做conv-bn
block_layer2: 4个block, 128个filter, layer间stride=2 (因为上一层出来后没有pool)
1. 第一个block:
对shortcut做kernel=[1, 1, 64, 128], s=2的conv和BN, (1, 180, 320, 64) -> (1, 90, 160, 128)
对主要分支先做kernel=[3, 3, 64, 128], s=2的卷积, padding='VALID', (1, 180, 320, 64) -> (1, 90, 160, 128)
再做kernel=[3, 3, 128, 128], s=1的卷积, padding='SAME', (1, 90, 160, 128) -> (1, 90, 160, 128)
2. 剩下的3个block, 每个block操作相同:
shortcut不操作直接和结果相加做Relu
对主要分支做两次[3, 3, 128, 128], s=1的卷积, padding='SAME', (1, 90, 160, 128) -> (1, 90, 160, 128) -> (1, 90, 160, 128)
block_layer3: 6个block, 256个filter, layer间stride=2
1. 第一个block:
对shortcut做kernel=[1, 1, 128, 256], s=2的conv和BN, (1, 90, 160, 128) -> (1, 45, 80, 256)
对主要分支先做kernel=[3, 3, 128, 256], s=2的卷积, padding='VALID', (1, 90, 160, 128) -> (1, 45, 80, 256)
再做kernel=[3, 3, 256, 256], s=1的卷积, padding='SAME', (1, 45, 80, 256) -> (1, 45, 80, 256)
2. 剩下的5个block, 每个block操作相同:
shortcut不操作直接和结果相加做Relu
对主要分支做两次[3, 3, 256, 256], s=1的卷积, padding='SAME', (1, 45, 80, 256) -> (1, 45, 80, 256) -> (1, 45, 80, 256)
block_layer4: 3个block, 512个filter, layer间stride=2
1. 第一个block:
对shortcut做kernel=[1, 1, 256, 512], s=2的conv和BN, (1, 45, 80, 256) -> (1, 23, 40, 512)
对主要分支先做kernel=[3, 3, 256, 512], s=2的卷积, padding='VALID', (1, 45, 80, 256) -> (1, 23, 40, 512)
再做kernel=[3, 3, 512, 512], s=1的卷积, padding='SAME', (1, 23, 40, 512) -> (1, 23, 40, 512)
2. 剩下的2个block, 每个block操作相同:
shortcut不操作直接和结果相加做Relu
对主要分支做两次[3, 3, 512, 512], s=1的卷积, padding='SAME', (1, 23, 40, 512) -> (1, 23, 40, 512)
avg_pool, 7*7
FC, output1000
softmax
输出prediction
Keras版结构如下, res2a代表stage2的第1个block, branch1是shortcut path, branch2是main path, branch2a代表是main path的第1个卷积: