电脑办公

Python: Pandas

2020-11-04  本文已影响0人  欺枫

pip install xlrd 可以用来读取excel

import pandas as pd

import datetime

import matplotlib

import matplotlib.pyplot as plt

import os      #os 适用于windows的路径,包括路径拼接等

cur_dir = os.path.dirname(__file__)

# __file__  为当前.py file 的位置

df = pd.read_csv(os.path.join(cur_dir,"employees.csv"))

#print(cur_dir)

#print(df)

#

# cur_dir is C:/Users/T596494/FZPython/Insideout2_dist

# os.path.join(cur_dir,"employees.csv") is C:/Users/T596494/FZPython/Insideout2_dist\employees.csv

# it can automatically add \

# when print df, it will print the file details

# df will show up the whole document's details - "employees.csv"

print(df.shape)

# shape will show the number of rows and columns of the data. - (1000, 4) 1000 rows, 4 columns 不含title的数据行数

# print(df.dtypes)

# dtypes check each columns' data type

# employee_id        int64

# annual_inc        float64

# employee_title    object

# home_ownership    object

# dtype: object

print(df.columns)

# Index(['employee_id', 'annual_inc', 'employee_title', 'home_ownership'], dtype='object')

# show each columns' title

print(df.head())

#df.head() 可以显示前面几行的数据,如果在括号里面输入3,print(df.head(3)) 则显示三行数据(包括title则为4行)

print(df.sample(10))

#随机显示10行数据,若不写,则只显示1行

print(df.tail(5))

#显示最后5行的数据

#把title为annual_inc的列储存到annual_incs的变量中。annual_incs的属性同df     

#Thisis known as a Series.

annual_incs = df['annual_inc']

print(annual_incs)

print(type(annual_incs))

print(annual_incs.head())

print(annual_incs.shape)

#将第二行的数据存到row_2,并且将相应数据显示出来

row_2 = df.iloc[1]

print(row_2)

emp_id = row_2['employee_id']

emp_title = row_2['employee_title']

print('The employee with ID {emp_id} has the job title {emp_title}.' .format(emp_id = emp_id,emp_title = emp_title))

#筛选

Filtering by ONE condition, numeric

To perform filtering by numeric values, first check the column is a numeric column (int64 or float64).

Then use the following formula to do so:

df[df['column_name']<conditional operator><value>]

#筛选 df中年收入大于 300000的所有行

print(df[df['annual_inc'] >=300000])

#对字符串类型的数据的筛选

#选出所有home_ownership 是OWN的数据

print(df[df['home_ownership'] =='OWN'].head())

#选出所有employee_title 是‘Accountant'或者'Sales'的数据

print(df[df['employee_title'].isin(['Accountant','Sales'])])

#多条件筛选

#选出employee_title 是President, 并且annual_inc 超过225000的数据

print(df[ (df['employee_title'] =='President') & (df['annual_inc'] >=225000)])

#选出employee_title是Sales, 并且annual_inc 超过100000 或者小于 80000

print(df[(df['employee_title']=='Sales') & ((df['annual_inc']>=100000) | (df['annual_inc']<=80000))])

#保存,用df的id对df2的id做vlookup,并且保存到output.csv

df2 = pd.read_csv(os.path.join(cur_dir,"employees2.csv"))

output = df[df['employee_id'].isin(df2['employee_id'])]

output.to_csv("output.csv",index=False)

#显示文件的信息

print(df.info())

#Draw graph with matplotlib

df.groupby('home_ownership')['home_ownership'].value_counts().unstack().plot(kind='bar',figsize=(10,5))

plt.show()

上一篇 下一篇

猜你喜欢

热点阅读