嵌牛IT观察

机器学习中的三种梯度下降法

2017-12-11  本文已影响0人  51fb659a6d6f

姓名:尤学强  学号:17101223374

转载自:http://mp.weixin.qq.com/s/DbAagAvzwy8iNYzeA1A8RA

【嵌牛导读】:采用梯度下降法来对采用的算法进行训练

【嵌牛鼻子】:函数,算法

【嵌牛提问】:怎样才是最优算法?

【嵌牛正文】:

在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。

下面我们以线性回归算法来对三种梯度下降法进行比较。

一般线性回归函数的假设函数为:

对应的损失函数为:

(这里的1/2是为了后面求导计算方便)

下图作为一个二维参数(theta0,theta1)组对应能量函数的可视化图:

下面我们来分别讲解三种梯度下降法

1

批量梯度下降法BGD

我们的目的是要误差函数尽可能的小,即求解weights使误差函数尽可能小。首先,我们随机初始化weigths,然后不断反复的更新weights使得误差函数减小直到满足要求时停止。这里更新算法我们选择梯度下降算法,利用初始化的weights并且反复更新weights:

这里代表学习率,表示每次向着J最陡峭的方向迈步的大小。为了更新weights,我们需要求出函数J的偏导数。首先当我们只有一个数据点(x,y)的时候,J的偏导数是:

则对所有数据点上述损失函数的偏导(累和)为:

再最小化损失函数的过程中,需要不断反复的更新weights使得误差函数减小,更新过程如下:

那么好了,每次参数更新的伪代码如下:

由上图更新公式我们就可以看到,我们每一次的参数更新都用到了所有的训练数据(比如有m个,就用到了m个),如果训练数据非常多的话,是非常耗时的

下面给出批梯度下降的收敛图:

从图中,我们可以得到BGD迭代的次数相对较少。

2

随机梯度下降法SGD

由于批梯度下降每跟新一个参数的时候,要用到所有的样本数,所以训练速度会随着样本数量的增加而变得非常缓慢。随机梯度下降正是为了解决这个办法而提出的。它是利用每个样本的损失函数对θ求偏导得到对应的梯度,来更新θ:

更新过程如下:

随机梯度下降是通过每个样本来迭代更新一次,对比上面的批量梯度下降,迭代一次需要用到所有训练样本(往往如今真实问题训练数据都是非常巨大),一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。

但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

随机梯度下降收敛图如下:

我们可以从图中看出SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。但是大体上是往着最优值方向移动。

3

min-batch 小批量梯度下降法MBGD

我们从上面两种梯度下降法可以看出,其各自均有优缺点,那么能不能在两种方法的性能之间取得一个折衷呢?算法的训练过程比较快,而且也要保证最终参数训练的准确率而这正是小批量梯度下降法(Mini-batch Gradient Descent,简称MBGD)的初衷。

我们假设每次更新参数的时候用到的样本数为10个(不同的任务完全不同,这里举一个例子而已

更新伪代码如下:

4

实例以及代码详解

这里参考他人博客,创建了一个数据,如下图所示:

待训练数据A、B为自变量,C为因变量。

上一篇下一篇

猜你喜欢

热点阅读