数据分析互联网科技商业智能BI那点事儿

数据可视化有哪些分类和图形?

2017-11-16  本文已影响104人  天善智能

感谢关注天善智能,走好数据之路↑↑↑

欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!

提到数据分析,就一定会有数据可视化。因为字不如表,表不如图,图像可以更加直观清晰的表达数值所无法表达的含义。可视化是数据分析的核心理念,我们往往会追求图表尽可能的具有美感,但是具有美感的图表不一定是有用的图表,两者之间不能划等号。

数据可视化的目的是让数据更高效,让读者快速了解而非只是自己使用才是我们最终的目标。在突出数据背后的规律,突出重要因素的前提下我们再进行美观上的优化才是正确的选择。

图表的基础概念

维度:描述分析的角度和属性,分类数据。时间,地理位置,产品类型等

度量:具体的参考数值,数值数据。元,销量,销售金额等

图表类型与应用

散点图

主要解释数据之间的规律

维度:0+

度量:2

图1

气泡图(变种的散点图1)

气泡图是散点图的变种,引入了第三个度量作为气泡的大小

维度:1+

度量:3

图2

单轴散点图(变种的散点图2)

维度作Y轴,更倾向于洞察数据在不同类别下的数据规律

维度:1+

度量:2

图3

折线图

用来观察数据随时间变化的趋势(维度不易过多,否则会容易造成混乱和复杂)

维度:1+

度量:1+

图4

面积图(变种的折线图)

注重数据类别之间随着时间趋势的变化关系

图5

柱形图展现类别之间的关系

维度:2

度量:1+

图6

直方图(柱形图的变种)统计型柱形图

维度:0

度量:1

图7

其他柱形图:正负比例柱形图,翻转比例柱形图,堆积柱形图,百分比堆积柱形图,瀑布图等

饼图数据分析一般用不到

维度:1

度量:1

图8

漏斗图对转化过程的直观展示,转化步骤不宜超过七个

维度:1

度量:1

图9

雷达图个体的数据和属性的可视化方案,比较偏描述性的数据

维度:1+

度量:1+

图10

树形图数据量较大,类别较多的数据分析时经常使用

维度:1+

度量:1

图11

桑基图揭示数据复杂变化趋势,可以一对多或者多对一

维度:2

度量:1

图12

热力图可以体现数据在空间上的变化规律

维度:1

度量:1

图13

关系图展现不同类别之间的数据关系

维度:2

度量:0+

图14

箱线图研究观察和对比数据分布

维度:1+

度量:1

图15

标靶图用于衡量业务销售完成情况

维度:1+

度量:2

图16

词云图直观大气展现大数据的最优先图表之一

维度:1

度量:0

图17

地理图 用于展现数据和空间之间的关系

维度:1

度量:1

图18

以上是数据可视化图表的初步学习,感谢浏览。

本文作者:天善智能社区七周成为数据分析师学员yexin 原文链接:https://ask.hellobi.com/blog/yexin/10368

上一篇下一篇

猜你喜欢

热点阅读