机器学习--有监督--线性回归
线性回归应该可以说是最简单的机器学习算法之一了,它最显著的优势在于其易解释性;同时也是理解后续深奥算法的基础。
1、线性回归的简单理解
-
(1)如下公式:线性回归过程就是计算出β0与β1...参数的过程。
β0即截距项,表示特征变量为0时的Y值;β1即斜率,表示特征变量每增加一个单位,Y预测值的变化量。
-
(2)通常线性回归使用最小二乘(ordinary least squares, OLS)的方法:找到一组最佳的参数组合,使得预测值与真实值的残差的平方和(Residual sum of squares, RSS)达到最小值的过程。
-
(3)最后可用均方差(mean square error, MSE)、均方根误差(RMSE)、R2用于评价模型的预测性能,从而可进一步用于与其它模型的比较。
-
(4)一个例子
lm()
基础函数进行线性回归:Gr_Liv_Area变量预测Sale_Price房价
split <- rsample::initial_split(ames, prop = 0.7,
strata = "Sale_Price")
ames_train <- rsample::training(split) #训练集
ames_test <- rsample::testing(split) #测试集
model1 <- lm(Sale_Price ~ Gr_Liv_Area, data = ames_train)
summary(model1)
# Call:
# lm(formula = Sale_Price ~ Gr_Liv_Area, data = ames_train)
#
# Residuals: (1)所有点预测值与真实值的残差分布
# Min 1Q Median 3Q Max
# -489196 -30736 -1944 21861 332565
#
# Coefficients: (2)预测的线性回归参数与显著性p值
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 12183.914 3915.674 3.112 0.00189 **
# Gr_Liv_Area 112.905 2.482 45.492 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# ####################(3)RMSE
# Residual standard error: 56840 on 2047 degrees of freedom
# Multiple R-squared: 0.5027, Adjusted R-squared: 0.5025
# F-statistic: 2070 on 1 and 2047 DF, p-value: < 2.2e-16
names(summary(model1))
# [1] "call" "terms" "residuals" "coefficients" "aliased"
# [6] "sigma" "df" "r.squared" "adj.r.squared" "fstatistic"
# [11] "cov.unscaled"
summary(model1)$r.squared
#[1] 0.502737
coef()
参看模型的参数
coef(model1)
# (Intercept) Gr_Liv_Area
# 12183.9139 112.9054
sigma()
查看模型的RMSE指标
sigma(model1)
# [1] 56835.05
confint()
查看模型参数的95%置信区间
confint(model1, level = 0.95)
# 2.5 % 97.5 %
# (Intercept) 4504.7933 19863.0344
# Gr_Liv_Area 108.0382 117.7727
2、较为复杂的线性回归
- 两个特征变量
model2 <- lm(Sale_Price ~ Gr_Liv_Area + Year_Built, data = ames_train)
# Call:
# lm(formula = Sale_Price ~ Gr_Liv_Area + Year_Built, data = ames_train)
#
# Coefficients:
# (Intercept) Gr_Liv_Area Year_Built
# -2.131e+06 9.536e+01 1.100e+03
两个变量可能会相互影响,即存在交互效应,这里没有考虑。
- 多个特征变量
# 考虑所有的变量
model3 <- lm(Sale_Price ~ ., data = ames_train)
broom::tidy(model3)
# # A tibble: 303 x 5
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 (Intercept) -9038908. 10336981. -0.874 0.382
# 2 MS_SubClassOne_Story_1945_and_Older 3020. 3350. 0.901 0.368
# 3 MS_SubClassOne_Story_with_Finished_Attic_All_Ages 7518. 10579. 0.711 0.477
# 4 MS_SubClassOne_and_Half_Story_Unfinished_All_Ages 18045. 12498. 1.44 0.149
# 5 MS_SubClassOne_and_Half_Story_Finished_All_Ages 8258. 5696. 1.45 0.147
# 6 MS_SubClassTwo_Story_1946_and_Newer 7284. 4907. 1.48 0.138
# 7 MS_SubClassTwo_Story_1945_and_Older 10683. 5523. 1.93 0.0532
# 8 MS_SubClassTwo_and_Half_Story_All_Ages 19066. 11001. 1.73 0.0832
# 9 MS_SubClassSplit_or_Multilevel -2217. 10282. -0.216 0.829
# 10 MS_SubClassSplit_Foyer 574. 6891. 0.0832 0.934
# # ... with 293 more rows
3、10折交叉验证评价、比较模型
- 在线性回归中,只有一个超参数即:是否包含截距项。
- 所以10折交叉验证的结果是反映所选择的特征变量的组合的线性回归的性能,从而用于比较其它模型。
-
model1
与cv_model1
library(caret)
set.seed(123)
cv_model1 <- train(
form = Sale_Price ~ Gr_Liv_Area,
data = ames_train,
method = "lm",
trControl = trainControl(method = "cv", number = 10)
)
cv_model1$results
# intercept RMSE Rsquared MAE RMSESD RsquaredSD MAESD
# 1 TRUE 56854.32 0.5103902 38802.52 4416.879 0.08540552 2272.675
#用于测试集
predictions <- predict(cv_model1, ames_test)
RMSE(predictions, ames_test$Sale_Price)
#[1] 55821.4
predictions <- predict(model1, ames_test)
RMSE(predictions, ames_test$Sale_Price)
#[1] 55821.4
提醒:
cv_model1
模型的参数值与之前的model1
其实是一样的,只是前者计算得到的RMSE、R2等指标更具有代表性。
- 其它两个模型
# model 2 CV
set.seed(123)
cv_model2 <- train(
Sale_Price ~ Gr_Liv_Area + Year_Built,
data = ames_train,
method = "lm",
trControl = trainControl(method = "cv", number = 10)
)
# model 3 CV
set.seed(123)
cv_model3 <- train(
Sale_Price ~ .,
data = ames_train,
method = "lm",
trControl = trainControl(method = "cv", number = 10)
)
- 比较三个模型的性能指标
summary(resamples(list(
model1 = cv_model1,
model2 = cv_model2,
model3 = cv_model3
)))
# 如下图结果,可以看出模型3的性能最优
4、线性回归的前提假设
-
(1)特征变量与响应变量存在线性相关性;如果不符合,则可进行log转换
-
(2)齐方差性:如果出现随着预测值变化,残差值也随着变化时,则提示可能为异方差;可以通过类似log转换或者添加额外的特征变量予以消除
-
(3)特征变量数多于样本数,可以通过之后学习的lasson回归进行变量选择;
-
(4)特征变量间存在共线性multicollinearity,可通过降维方式转变为低相关性的新特征变量。
4.1 PCA
-
principal component regression (PCR) 无监督的降维:将原始的特征变量集转换为少量的,弱相关的主成分(新特征变量);然后使用新的特征变量值进行线性回归建模;
- 如上图,这时涉及到选择多少个主成分用于回归的问题(超参数)
# perform 10-fold cross validation on a PCR model tuning the
# number of principal components to use as predictors from 1-100
set.seed(123)
cv_model_pcr <- train(
Sale_Price ~ .,
data = ames_train,
method = "pcr",
trControl = trainControl(method = "cv", number = 10),
preProcess = c("zv", "center", "scale"),
tuneLength = 100
)
# model with lowest RMSE
cv_model_pcr$bestTune
## ncomp
## 87 87
library(tidyverse)
# results for model with lowest RMSE
cv_model_pcr$results %>%
dplyr::filter(ncomp == pull(cv_model_pcr$bestTune))
## ncomp RMSE Rsquared MAE RMSESD RsquaredSD MAESD
## 1 97 30135.51 0.8615453 20143.42 5191.887 0.03764501 1696.534
# plot cross-validated RMSE
ggplot(cv_model_pcr)
4.2 PLS
-
Partial least squares (PLS) 有监督的降维:得到的新的特征变量不仅代表了原数据的高相关的特征标量,而且与响应变量相关;
- 如下图只要三个新特征变量即可达到最佳效果
# perform 10-fold cross validation on a PLS model tuning the
# number of principal components to use as predictors from 1-30
set.seed(123)
cv_model_pls <- train(
Sale_Price ~ .,
data = ames_train,
method = "pls",
trControl = trainControl(method = "cv", number = 10),
preProcess = c("zv", "center", "scale"),
tuneLength = 30
)
# model with lowest RMSE
cv_model_pls$bestTune
## ncomp
## 20 20
# results for model with lowest RMSE
cv_model_pls$results %>%
dplyr::filter(ncomp == pull(cv_model_pls$bestTune))
## ncomp RMSE Rsquared MAE RMSESD RsquaredSD MAESD
## 1 20 25459.51 0.8998194 16022.68 5243.478 0.04278512 1665.61
# plot cross-validated RMSE
ggplot(cv_model_pls)
-
从样本的主成分载荷值也能看出,PLS计算得到的新特征向量与响应变量的相关性更高
5、特征变量的讨论
5.1 哪些特征变量在线性回归建模中贡献最大
- 主要根据特征变量系数的P值;
library(vip)
#The importance measure is normalized from 100 (most important) to 0 (least important).
vip(cv_model_pls, num_features = 20, method = "model")
5.2 partial dependence plots (PDPs).
- 其它特征变量取均值时,响应变量随选定特征的变化而变化的情况
pdp::partial(cv_model_pls, "Gr_Liv_Area", grid.resolution = 20, plot = TRUE)