2018-03-31 开胃学习Data系列 - 基础知识1

2018-04-01  本文已影响0人  Kaiweio

.csv 处理

这里学习 通过一个.csv文件进行基本的迭代,来创建字典和收集汇总统计。
不过总的用一个词来描述 这个csv方法就是 tedious

import csv
%precision 2  #设置列印的浮点数据精度为2。
​
with open('mpg.csv') as csvfile:
    mpg = list(csv.DictReader(csvfile))
  
# 使用csv.DictReader读取我们的mpg.csv 并将其转换为列表的字典。


mpg[:1] # The first dictionaries in our list.

#输出如下
>>>
[OrderedDict([('', '1'),
              ('manufacturer', 'audi'),
              ('model', 'a4'),
              ('displ', '1.8'),
              ('year', '1999'),
              ('cyl', '4'),
              ('trans', 'auto(l5)'),
              ('drv', 'f'),
              ('cty', '18'),
              ('hwy', '29'),
              ('fl', 'p'),
              ('class', 'compact')])]
len(mpg)
# 有234 个字典key mpg[233] 是最后一个
mpg[233].keys()
>>>
234

keys gives us the column names of our csv.

mpg[233].keys()
odict_keys(['', 'manufacturer', 'model', 'displ', 'year', 'cyl', 'trans', 'drv', 'cty', 'hwy', 'fl', 'class'])

下面这个是如何找到每个城市的平均mpg,以及每个hwy的平均mpg:
因为字典里的内容都是string,所以需要转化成float才可以计算

sum(float(d['cty']) for d in mpg) / len(mpg)
sum(float(d['hwy']) for d in mpg) / len(mpg)

现在尝试返回数据组中所有的汽缸的数据值:

cylinders = set(d['cyl'] for d in mpg)
cylinders
>>> {'4', '5', '6', '8'}

这里用气缸的数量来分组汽车,并找出每个组的平均mpg。

CtyMpgByCyl = []
​# 创建一个list

for c in cylinders:                     # 循环这个汽缸的list
    summpg = 0
    cyltypecount = 0
    for d in mpg:                       # 迭代所有的字典元素
        if d['cyl'] == c:               # 如果找到了当下循环的汽缸值
            summpg += float(d['cty'])   # 把cty的mpg累加
            cyltypecount += 1           # increment the count
    CtyMpgByCyl.append((c, summpg / cyltypecount)) # append the tuple ('cylinder', 'avg mpg')
​
CtyMpgByCyl.sort(key=lambda x: x[0])  
CtyMpgByCyl
[('4', 21.01), ('5', 20.50), ('6', 16.22), ('8', 12.57)]

其他变量分类的例子:

vehicleclass = set(d['class'] for d in mpg) # what are the class types
vehicleclass
>>> {'2seater', 'compact', 'midsize', 'minivan', 'pickup', 'subcompact', 'suv'}

#average hwy mpg for each class of vehicle


HwyMpgByClass = []

for t in vehicleclass: # iterate over all the vehicle classes
    summpg = 0
    vclasscount = 0
    for d in mpg: # iterate over all dictionaries
        if d['class'] == t: # if the cylinder amount type matches,
            summpg += float(d['hwy']) # add the hwy mpg
            vclasscount += 1 # increment the count
    HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg')
HwyMpgByClass.sort(key=lambda x: x[1])
HwyMpgByClass
HwyMpgByClass = []

for t in vehicleclass: # iterate over all the vehicle classes
    summpg = 0
    vclasscount = 0
    for d in mpg: # iterate over all dictionaries
        if d['class'] == t: # if the cylinder amount type matches,
            summpg += float(d['hwy']) # add the hwy mpg
            vclasscount += 1 # increment the count
    HwyMpgByClass.append((t, summpg / vclasscount)) # append the tuple ('class', 'avg mpg')
​
HwyMpgByClass.sort(key=lambda x: x[1])
HwyMpgByClass
#Output below
[('pickup', 16.88),
 ('suv', 18.13),
 ('minivan', 22.36),
 ('2seater', 24.80),
 ('midsize', 27.29),
 ('subcompact', 28.14),
 ('compact', 28.30)]













































time 和 datetime

前提:Python中的一些基本的知识:
应该意识到该日期和 时间的存储有许多不同的方式。
用于存储日期最常用的传统方法之一, 时间在网上系统是基于从纪元epoch 的偏移量offset。这个epoch是1970年1月1日。
所以如果看到很大的数字,而希望看到日期和时间, 需要转换它们,使数据变得有意义。

import datetime as dt
import time as tm

time returns the current time in seconds since the Epoch. (January 1st, 1970)

tm.time()
>>> 1523682711.76

dtnow = dt.datetime.fromtimestamp(tm.time())
#Convert the timestamp to datetime.
dtnow
>>>datetime.datetime(2018, 4, 14, 4, 51, 12, 996246)

#更方便的写法
dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second 
# get year, month, day, etc.from a datetime
(2018, 4, 14, 4, 51, 12)

timedelta 是两个时间之间的差值,可以用来计算前后的时间,在datetime 包里
datetime 返回的是今天的日期

delta = dt.timedelta(days = 100) # create a timedelta of 100 days
delta
>>> datetime.timedelta(100)


today = dt.date.today()
# 返回一百天前的日期
today - delta   
datetime.date(2018, 1, 4)

#比较日期
today > today-delta    
True
上一篇 下一篇

猜你喜欢

热点阅读