视频音频程序员首页投稿(暂停使用,暂停投稿)

视频库LFLiveKit分析(一):视频采集

2017-10-01  本文已影响444人  FindCrt

整体架构

LFLiveSession为中心切分成3部分:

整体架构.png

数据采集分为视频和音频:

编码部分:

推送部分:

视频采集

视频采集部分内容比较多,可以分为几点:

核心类,也是承担控制器角色的是LFVideoCapture,负责组装相机和滤镜,管理视频数据流。


1. 相机

相机的核心类是GPUImageVideoCamera

相机数据流程.png
视频采集使用系统库AVFoundationAVCaptureSession,所以就是常规性的几步:
  1. 构建AVCaptureSession:_captureSession = [[AVCaptureSession alloc] init];
  2. 配置输入和输出,输入是设备,一般就有前后摄像头的区别
NSArray *devices = [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo];
  for (AVCaptureDevice *device in devices) 
  {
      if ([device position] == cameraPosition)
      {
          _inputCamera = device;
      }
  }
  
  .....
  NSError *error = nil;
  videoInput = [[AVCaptureDeviceInput alloc] initWithDevice:_inputCamera error:&error];
  if ([_captureSession canAddInput:videoInput]) 
  {
      [_captureSession addInput:videoInput];
  }
  1. 输出可以是文件也可以是数据,这里因为要推送到服务器,而且也为了后续的图像处理,显然要用数据输出。
videoOutput = [[AVCaptureVideoDataOutput alloc] init];
  [videoOutput setAlwaysDiscardsLateVideoFrames:NO];
  ......
  [videoOutput setSampleBufferDelegate:self queue:cameraProcessingQueue];
  if ([_captureSession canAddOutput:videoOutput])
  {
      [_captureSession addOutput:videoOutput];
  }

中间还一大段captureAsYUV为YES时执行的代码,有两种方式,一个是相机输出YUV格式,然后转成RGBA,还一种是直接输出BGRA,然后转成RGBA。前一种对应的是kCVPixelFormatType_420YpCbCr8BiPlanarFullRangekCVPixelFormatType_420YpCbCr8BiPlanarVideoRange,后一种对应的是kCVPixelFormatType_32BGRA,相机数据输出格式只接受这3种。中间的这一段的目的就是设置相机输出YUV,然后再转成RGBA。OpenGL和滤镜的问题先略过。

这里有个问题:h264编码时用的是YUV格式的,这里输出RGB然后又转回YUV不是浪费吗?还有输出YUV,然后自己转成RGB,然后编码时再转成YUV不是傻?如果直接把输出的YUV转码推送会怎么样?考虑到滤镜的使用,滤镜方便处理YUV格式的图像吗?
这些问题以后再深入研究,先看默认的流程里的处理原理。

配置完session以及输入输出,开启session后,数据从设备采集,然后调用dataOutput的委托方法:captureOutput:didOutputSampleBuffer:fromConnection

这里还有针对audio的处理,但音频不是在这采集的,这里的audio没启用,可以直接忽略先。

然后到方法processVideoSampleBuffer:,代码不少,干的就一件事:把相机输出的视频数据转到RGBA的格式的texture里。然后调用updateTargetsForVideoCameraUsingCacheTextureAtWidth这个方法把处理完的数据传递给下一个图像处理组件。

整体而言,相机就是收集设备的视频数据,然后倒入到图像处理链里。所以要搞清楚视频输出怎么传递到预览界面和LFLiveSession的,需要先搞清楚滤镜/图像处理链是怎么传递数据的。


2. 图像处理链

这里有两种处理组件:GPUImageOutputGPUImageInput

GPUImageOutput有一个target的概念的东西,在它处理完一个图像后,把图像传递给它的target。而GPUImageInput怎么接受从其他对象那传递过来的图像。通过这两个组件,就可以把一个图像从一个组件传递另一个组件,形成链条。有点像接水管?-_-

而且可以是交叉性的,如图:

图像处理链.png

有些滤镜是需要多个输入源,比如水印效果、蒙版效果,就可能出现D+E --->F的情况。这样的结构好处就是每个环节可以自由的处理自己的任务,而不需要管数据从哪来,要推到那里去。有数据它就处理,处理完就推到自己的tagets里去。

我比较好奇的是为什么GPUImageOutput定义成了类,而GPUImageInput却是协议,这也是值得思考的问题。

有了这两个组件的认识,再去到LFVideoCapturereloadFilter方法。在这里,它把视频采集的处理链组装起来了,在这可以很清晰的看到图像数据的流动路线。

相机组件GPUImageVideoCamera继承于GPUImageOutput,它会把数据输出到它的target.

//< 480*640 比例为4:3  强制转换为16:9
if([self.configuration.avSessionPreset isEqualToString:AVCaptureSessionPreset640x480]){
        CGRect cropRect = self.configuration.landscape ? CGRectMake(0, 0.125, 1, 0.75) : CGRectMake(0.125, 0, 0.75, 1);
        self.cropfilter = [[GPUImageCropFilter alloc] initWithCropRegion:cropRect];
        [self.videoCamera addTarget:self.cropfilter];
        [self.cropfilter addTarget:self.filter];
    }else{
        [self.videoCamera addTarget:self.filter];
    }

如果是640x480的分辨率,则路线是:videoCamera --> cropfilter --> filter,否则是videoCamera --> filter。

其他部分类似,就是条件判断是否加入某个组件,最后都会输出到:self.gpuImageViewself.output。形成数据流大概:

视频采集基本数据流.png

self.gpuImageView是视频预览图的内容视图,设置preview的代码:

- (void)setPreView:(UIView *)preView {
    if (self.gpuImageView.superview) [self.gpuImageView removeFromSuperview];
    [preView insertSubview:self.gpuImageView atIndex:0];
    self.gpuImageView.frame = CGRectMake(0, 0, preView.frame.size.width, preView.frame.size.height);
}

有了这个就可以看到经过一系列处理的视频图像了,这个是给拍摄者自己看到。

self.output本身没什么内容,只是作为最后一个节点,把内容往外界传递出去:

    __weak typeof(self) _self = self;
    [self.output setFrameProcessingCompletionBlock:^(GPUImageOutput *output, CMTime time) {
       [_self processVideo:output];
    }];
    
    ......
    
    - (void)processVideo:(GPUImageOutput *)output {
    __weak typeof(self) _self = self;
    @autoreleasepool {
        GPUImageFramebuffer *imageFramebuffer = output.framebufferForOutput;
        CVPixelBufferRef pixelBuffer = [imageFramebuffer pixelBuffer];
        
        if (pixelBuffer && _self.delegate && [_self.delegate respondsToSelector:@selector(captureOutput:pixelBuffer:)]) {
            [_self.delegate captureOutput:_self pixelBuffer:pixelBuffer];
        }
    }
}

self.delegate就是LFLiveSession对象,视频数据就流到了session部分,进入编码阶段。


3. 滤镜和OpenGL

滤镜的实现部分,先看一个简单的例子:GPUImageCropFilter。在上面也用到了,就是用来做裁剪的。

它继承于GPUImageFilter,而GPUImageFilter继承于GPUImageOutput <GPUImageInput>,它既是一个output也是input。

作为input,会接收处理的图像,看GPUImageVideoCameraupdateTargetsForVideoCameraUsingCacheTextureAtWidth方法可以知道,传递给input的方法有两个:

GPUImageFramebuffer是LFLiveKit封装的数据,用来在图像处理组件之间传递,包含了图像的大小、纹理、纹理类型、采样格式等。在图像处理链里传递图像,肯定需要一个统一的类型,除了图像本身,肯定还需要关于图像的信息,这样每个组件可以按相同的标准对待图像。GPUImageFramebuffer就起的这个作用。

GPUImageFramebuffer内部核心的东西是GLuint framebuffer,即OpenGL里的frameBufferObject(FBO).关于FBO我也不是很了解,只知道它像一个容器,可以挂载了render buffer、texture、depth buffer等,也就是原本渲染输出到屏幕的东西,可以输出到一个FBO,然后可以拿这个渲染的结果进行再一次的处理。

顶点位置.png

纹理坐标跟OpenGL坐标方向是一样的的:

纹理坐标.png

但是图像坐标却是跟它们反的,一个图片的数据是从左上角开始显示的,跟UI的坐标是一样的。也就是,读取一张图片作为texture后,纹理坐标(0, 0)读到的数据时图片左下角的。之前我搞晕了是:认为纹理坐标和OpenGL坐标是颠倒的,而没有意识到纹理和图像的区别。当用图片和用纹理做输入源时就有区别了。

有了3种坐标的认识,分析剪切效果的纹理坐标前还要先看下preview(GPUImageView)的纹理坐标逻辑,因为你眼睛看到的是preview的处理结果,它并不等于corpFiter的结果,不搞清它可能就被欺骗了。

视频图像、纹理坐标变换.png

以纹理/图像的角度看流程是这样:

坐标变换.png

蓝色是图像,红色是纹理。

就因为上面的原因,你眼睛看到的和纹理本身是上下相反的。直接显示相机输出的时候是landscapeRight,要想变竖直,看起来应该是向左转。但这个是图像显示左转,那么就是纹理坐标按右转的取。说了那么多,坑在这里,图像的左转效果需要纹理的右转效果来实现

switch(_outputImageOrientation)
{
    case UIInterfaceOrientationPortrait:outputRotation = kGPUImageRotateRight; break;
    case UIInterfaceOrientationPortraitUpsideDown:outputRotation = kGPUImageRotateLeft; break;
    ......
}
cropFilter的纹理坐标计算

在回到剪切效果,虚线是剪切的位置:

纹理旋转+剪切的逻辑示意图.png

计算使用的数据:

    CGFloat minX = _cropRegion.origin.x;
    CGFloat minY = _cropRegion.origin.y;
    CGFloat maxX = CGRectGetMaxX(_cropRegion);
    CGFloat maxY = CGRectGetMaxY(_cropRegion);

就是剪切区域的上下左右边界,看剪切+右转的情形。图6是最终期望的结果,但剪切是图像处理之一,它的输出是texture,所以它的输出是图3。第1个顶点,也就是左下角(-1, -1),对应的内容位置是1附近的虚线框顶点,1在输入的texture里是左上角,纹理坐标的x是距离边1-2的距离,纹理坐标y是距离距离边2-3的距离。

minX、minY这些数据是在哪个图的?图6。因为我们传入的数据是根据自己眼睛看到的样子来的,这个才是最终人需要的结果:

所以左下角的纹理坐标应该是(minY, 1-minX)。


最后

花了很多的篇幅去说纹理坐标的问题,一开始本来想挑个简单例子(cropFiler)说下滤镜组件的,但是这个纹理坐标的计算让我陷入了糊涂,不搞清楚实在不舒服。

更轻松的解决方案?

  1. 把旋转做成单独的处理组件,不要和其他的滤镜混在一起了,其他处理组件就按照当前不旋转的样式来。
  2. 这些旋转+剪切的逻辑可能一个矩阵运算就直接搞定了,那样会更好理解些。

值得学习的地方:

上一篇 下一篇

猜你喜欢

热点阅读