嵌牛IT观察Python可视化数据可视化

Python数据可视化工具pyecharts使用细则

2018-11-08  本文已影响162人  羽_71ba

姓名:刘成龙  学号:16020199016

转载自:https://www.jiqizhixin.com/articles/2018-08-16-6,有删节。

【嵌牛导读】:Python数据可视化工具pyecharts使用细则

【嵌牛鼻子】:pyecharts

【嵌牛提问】:你会用pyecharts吗?

【嵌牛正文】:

前言

我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

安装

写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

pip install pyecharts

但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

使用实例

使用之前我们要强调一点:就是python2.xpython3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

from __future__ import unicode_literals

现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

柱状图-Bar

//导入柱状图-Bar

from pyecharts import Bar

//设置行名

columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

//设置数据

data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]

data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]

//设置柱状图的主标题与副标题

bar = Bar("柱状图", "一年的降水量与蒸发量")

//添加柱状图的数据及配置项

bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])

//生成本地文件(默认为.html文件)

bar.render()

运行结果如下:

简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

饼图-Pie

//导入饼图Pie

from pyecharts import Pie

//设置主标题与副标题,标题设置居中,设置宽度为900

pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)

//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示

pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)

//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签

pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)

//保存图表

pie.render()

箱体图-Boxplot

//导入箱型图Boxplot

from pyecharts import Boxplot 

boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")

x_axis = ['降水量','蒸发量']

y_axis = [data1,data2]

//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]

yaxis = boxplot.prepare_data(y_axis)       

boxplot.add("天气统计", x_axis, _yaxis)

boxplot.render()

折线图-Line

from pyecharts import Line

line = Line("折线图","一年的降水量与蒸发量")

//is_label_show是设置上方数据是否显示

line.add("降水量", columns, data1, is_label_show=True)

line.add("蒸发量", columns, data2, is_label_show=True)

line.render()

雷达图-Rader

from pyecharts import Radar

radar = Radar("雷达图", "一年的降水量与蒸发量")

//由于雷达图传入的数据得为多维数据,所以这里需要做一下处理

radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]

radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]

//设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同

schema = [ 

    ("Jan", 5), ("Feb",10), ("Mar", 10),

    ("Apr", 50), ("May", 50), ("Jun", 200),

    ("Jul", 200), ("Aug", 200), ("Sep", 50),

    ("Oct", 50), ("Nov", 10), ("Dec", 5)

]

//传入坐标

radar.config(schema)

radar.add("降水量",radar_data1)

//一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色

radar.add("蒸发量",radar_data2,item_color="#1C86EE")

radar.render()

散点图-scatter

from pyecharts import Scatter

scatter = Scatter("散点图", "一年的降水量与蒸发量")

//xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置

scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",

            yaxis_name_gap=40)

scatter.render()

图表布局 Grid

由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

from pyecharts import Grid//设置折线图标题位置line = Line("折线图","一年的降水量与蒸发量",title_top="45%")line.add("降水量", columns, data1, is_label_show=True)line.add("蒸发量", columns, data2, is_label_show=True)grid = Grid()//设置两个图表的相对位置grid.add(bar, grid_bottom="60%")grid.add(line, grid_top="60%")grid.render()

两图结合 Overlap

from pyecharts import Overlap

overlap = Overlap()

bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")

bar.add("降水量", columns, data1, mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_point=["max", "min"])

overlap.add(bar)

overlap.add(line)

overlap.render()

总结

导入相关图表包

进行图表的基础设置,创建图表对象

利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)

利用render()方法来进行图表保存

上一篇下一篇

猜你喜欢

热点阅读