链表翻转的图文讲解(递归与迭代两种实现)

2019-07-24  本文已影响0人  二斤寂寞

链表的翻转是程序员面试中出现频度最高的问题之一,常见的解决方法分为递归和迭代两种。

1、非递归(迭代)方式

迭代的方式是从链头开始处理,如下图给定一个存放5个数的链表。


image.png

首先对于链表设置两个指针:


image.png

然后依次将旧链表上每一项添加在新链表的后面,然后新链表的头指针NewH移向新的链表头,如下图所示。此处需要注意,不可以上来立即将上图中P->next直接指向NewH,这样存放2的地址就会被丢弃,后续链表保存的数据也随之无法访问。而是应该设置一个临时指针tmp,先暂时指向P->next指向的地址空间,保存原链表后续数据。然后再让P->next指向NewH,最后P=tmp就可以取回原链表的数据了,所有循环访问也可以继续展开下去。


image.png

指针继续向后移动,直到P指针指向NULL停止迭代。

image.png

最后一步:


image.png

非递归实现的代码

node* reverseList(node* H)
{
    if (H == NULL || H->next == NULL) //链表为空或者仅1个数直接返回
        return H;
    node* p = H, *newH = NULL;
    while (p != NULL)                 //一直迭代到链尾
    {
        node* tmp = p->next;          //暂存p下一个地址,防止变化指针指向后找不到后续的数
        p->next = newH;               //p->next指向前一个空间
        newH = p;                     //新链表的头移动到p,扩长一步链表
        p    = tmp;                   //p指向原始链表p指向的下一个空间
    }
    return newH;
}

2、递归方式

我们再来看看递归实现链表翻转的实现,前面非递归方式是从前面数1开始往后依次处理,而递归方式则恰恰相反,它先循环找到最后面指向的数5,然后从5开始处理依次翻转整个链表。

首先指针H迭代到底如下图所示,并且设置一个新的指针作为翻转后的链表的头。由于整个链表翻转之后的头就是最后一个数,所以整个过程NewH指针一直指向存放5的地址空间。


image.png

然后H指针逐层返回的时候依次做下图的处理,将H指向的地址赋值给H->next->next指针,并且一定要记得让H->next =NULL,也就是断开现在指针的链接,否则新的链表形成了环,下一层H->next->next赋值的时候会覆盖后续的值。


image.png

继续返回操作:


image.png

上图第一次如果没有将存放4空间的next指针赋值指向NULL,第二次H->next->next=H,就会将存放5的地址空间覆盖为3,这样链表一切都大乱了。接着逐层返回下去,直到对存放1的地址空间处理。

image.png

返回到头:


image.png

迭代实现的代码

node* In_reverseList(node* H)
{
    if (H == NULL || H->next == NULL)       //链表为空直接返回,而H->next为空是递归基
        return H;
    node* newHead = In_reverseList(H->next); //一直循环到链尾 
    H->next->next = H;                       //翻转链表的指向
    H->next = NULL;                          //记得赋值NULL,防止链表错乱
    return newHead;                          //新链表头永远指向的是原链表的链尾
}
整体实现的程序:
#include<iostream>
using namespace std;

struct node{
    int val;
    struct node* next;
    node(int x) :val(x){}
};
/***非递归方式***/
node* reverseList(node* H)
{
    if (H == NULL || H->next == NULL) //链表为空或者仅1个数直接返回
        return H;
    node* p = H, *newH = NULL;
    while (p != NULL)                 //一直迭代到链尾
    {
        node* tmp = p->next;          //暂存p下一个地址,防止变化指针指向后找不到后续的数
        p->next = newH;               //p->next指向前一个空间
        newH = p;                     //新链表的头移动到p,扩长一步链表
        p    = tmp;                   //p指向原始链表p指向的下一个空间
    }
    return newH;
}
/***递归方式***/
node* In_reverseList(node* H)
{
    if (H == NULL || H->next == NULL)       //链表为空直接返回,而H->next为空是递归基
        return H;
    node* newHead = In_reverseList(H->next); //一直循环到链尾 
    H->next->next = H;                       //翻转链表的指向
    H->next = NULL;                          //记得赋值NULL,防止链表错乱
    return newHead;                          //新链表头永远指向的是原链表的链尾
}
int main()
{
    node* first = new node(1);
    node* second = new node(2);
    node* third = new node(3);
    node* forth = new node(4);
    node* fifth = new node(5);
    first->next = second;
    second->next = third;
    third->next = forth;
    forth->next = fifth;
    fifth->next = NULL;
    //非递归实现
    node* H1 = first;
    H1 = reverseList(H1);    //翻转
    //递归实现
    node* H2 = H1;    //请在此设置断点查看H1变化,否则H2再翻转,H1已经发生变化
    H2 = In_reverseList(H2); //再翻转

    return 0;
}

原文:https://blog.csdn.net/fx677588/article/details/72357389

上一篇 下一篇

猜你喜欢

热点阅读