Stream SQL Join【流转批】

2021-03-31  本文已影响0人  bigdata张凯翔

场景说明

假定某个Flink业务1每秒就会收到1条消息记录,消息记录某个用户的基本信息,包括名字、性别、年龄。另有一个Flink业务2会不定时收到1条消息记录,消息记录该用户的名字、职业信息。

基于某些业务要求,开发的Flink应用程序实现功能:实时的以根据业务2中消息记录的用户名字作为关键字,对两个业务数据进行联合查询。

数据规划

开发思路

1.启动Flink Kafka Producer应用向Kafka发送数据。
2.启动Flink Kafka Consumer应用从Kafka接收数据,构造Table1,保证topic与producer一致。
3.从soket中读取数据,构造Table2。
4.使用Flink SQL对Table1和Table2进行联合查询,并进行打印。

功能介绍

在Flink应用中,调用flink-connector-kafka模块的接口,生产并消费数据。
用户在开发前需要kafka-client-1.1.0.jar,该jar包可在maven reposity目录下获取。

下面列出producer和consumer,以及Flink Stream SQL Join使用主要逻辑代码作为演示:
1.每秒钟往Kafka中生产一条用户信息,用户信息有姓名、年龄、性别组成。

//producer代码
public class WriteIntoKafka {
      public static void main(String[] args) throws Exception { 
        // 构造执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 设置并发度
        env.setParallelism(1);
        // 解析运行参数
        ParameterTool paraTool = ParameterTool.fromArgs(args);
        // 构造流图,将自定义Source生成的数据写入Kafka
        DataStream<String> messageStream = env.addSource(new SimpleStringGenerator());

        FlinkKafkaProducer010 producer = new FlinkKafkaProducer010<>(new FlinkKafkaProducer010<>(paraTool.get("topic"),

           new SimpleStringSchema(),

           paraTool.getProperties()));

        messageStream.addSink(producer);

        // 调用execute触发执行
        env.execute();
     }

// 自定义Source,每隔1s持续产生消息
public static class SimpleStringGenerator implements SourceFunction<String> {
        static final String[] NAME = {"Carry", "Alen", "Mike", "Ian", "John", "Kobe", "James"};

        static final String[] SEX = {"MALE", "FEMALE"};

        static final int COUNT = NAME.length;   

        boolean running = true;

        Random rand = new Random(47);

       @Override
        //rand随机产生名字,性别,年龄的组合信息
         public void run(SourceContext<String> ctx) throws Exception {

            while (running) {

                int i = rand.nextInt(COUNT);

                int age = rand.nextInt(70);

                String sexy = SEX[rand.nextInt(2)];

                ctx.collect(NAME[i] + "," + age + "," + sexy);

                thread.sleep(1000);

            }

    }

       @Override

       public void cancel() {

         running = false;

       }

     }

   }

2.生成Table1和Table2,并使用Join对Table1和Table2进行联合查询,打印输出结果。

public class SqlJoinWithSocket {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

        //基于EventTime进行处理
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        env.setParallelism(1);

        ParameterTool paraTool = ParameterTool.fromArgs(args);

        //Stream1,从Kafka中读取数据
        DataStream<Tuple3<String, String, String>> kafkaStream = env.addSource(new FlinkKafkaConsumer010<>(paraTool.get("topic"),
                new SimpleStringSchema(),
                paraTool.getProperties())).map(new MapFunction<String, Tuple3<String, String, String>>() {
            @Override
            public Tuple3<String, String, String> map(String s) throws Exception {
                String[] word = s.split(",");

                return new Tuple3<>(word[0], word[1], word[2]);
            }
        });

        //将Stream1注册为Table1
        tableEnv.registerDataStream("Table1", kafkaStream, "name, age, sexy, proctime.proctime");

        //Stream2,从Socket中读取数据
        DataStream<Tuple2<String, String>> socketStream = env.socketTextStream(hostname, port, "\n").
                map(new MapFunction<String, Tuple2<String, String>>() {
                    @Override
                    public Tuple2<String, String> map(String s) throws Exception {
                        String[] words = s.split("\\s");
                        if (words.length < 2) {
                            return new Tuple2<>();
                        }

                        return new Tuple2<>(words[0], words[1]);
                    }
                });

        //将Stream2注册为Table2
        tableEnv.registerDataStream("Table2", socketStream, "name, job, proctime.proctime");

        //执行SQL Join进行联合查询
        Table result = tableEnv.sqlQuery("SELECT t1.name, t1.age, t1.sexy, t2.job, t2.proctime as shiptime\n" +
                "FROM Table1 AS t1\n" +
                "JOIN Table2 AS t2\n" +
                "ON t1.name = t2.name\n" +
                "AND t1.proctime BETWEEN t2.proctime - INTERVAL '1' SECOND AND t2.proctime + INTERVAL '1' SECOND");

        //将查询结果转换为Stream,并打印输出
        tableEnv.toAppendStream(result, Row.class).print();

        env.execute();
    }
}
上一篇 下一篇

猜你喜欢

热点阅读