前端技术程序员数据结构和算法分析

漫画:什么是红黑树?

2017-12-17  本文已影响101人  程序员小灰

————————————

————————————

二叉查找树(BST)具备什么特性呢?

1.子树上所有结点的值均小于或等于它的根结点的值。

2.子树上所有结点的值均大于或等于它的根结点的值。

3.左、右子树也分别为二叉排序树。

下图中这棵树,就是一颗典型的二叉查找树:

1.查看根节点9

2.由于10 > 9,因此查看右孩子13

3.由于10 < 13,因此查看左孩子11

4.由于10 < 11,因此查看左孩子10,发现10正是要查找的节点:

假设初始的二叉查找树只有三个节点,根节点值为9,左孩子值为8,右孩子值为12:

接下来我们依次插入如下五个节点:7,6,5,4,3。依照二叉查找树的特性,结果会变成什么样呢?

1.节点是红色或黑色。

2.根节点是黑色。

3.每个叶子节点都是黑色的空节点(NIL节点)。

4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)

5.从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

下图中这棵树,就是一颗典型的红黑树:

什么情况下会破坏红黑树的规则,什么情况下不会破坏规则呢?我们举两个简单的栗子:

1.向原红黑树插入值为14的新节点:

由于父节点15是黑色节点,因此这种情况并不会破坏红黑树的规则,无需做任何调整。

2.向原红黑树插入值为21的新节点:

由于父节点22是红色节点,因此这种情况打破了红黑树的规则4(每个红色节点的两个子节点都是黑色),必须进行调整,使之重新符合红黑树的规则。

变色:

为了重新符合红黑树的规则,尝试把红色节点变为黑色,或者把黑色节点变为红色。

下图所表示的是红黑树的一部分,需要注意节点25并非根节点。因为节点21和节点22连续出现了红色,不符合规则4,所以把节点22从红色变成黑色:

但这样并不算完,因为凭空多出的黑色节点打破了规则5,所以发生连锁反应,需要继续把节点25从黑色变成红色:

此时仍然没有结束,因为节点25和节点27又形成了两个连续的红色节点,需要继续把节点27从红色变成黑色:

左旋转:

逆时针旋转红黑树的两个节点,使得父节点被自己的右孩子取代,而自己成为自己的左孩子。说起来很怪异,大家看下图:

图中,身为右孩子的Y取代了X的位置,而X变成了自己的左孩子。此为左旋转。

右旋转:

顺时针旋转红黑树的两个节点,使得父节点被自己的左孩子取代,而自己成为自己的右孩子。大家看下图:

图中,身为左孩子的Y取代了X的位置,而X变成了自己的右孩子。此为右旋转。

我们以刚才插入节点21的情况为例:

首先,我们需要做的是变色,把节点25及其下方的节点变色:

此时节点17和节点25是连续的两个红色节点,为了维持红黑树的规则,我们把节点8和节点17进行变色,由红色节点编程黑色节点。这样以来就形成了新的红黑树(这里感谢网友的指正,之前所讲的变换方式有问题):

几点说明:

1. 关于红黑树自平衡的调整,插入和删除节点的时候都涉及到很多种Case,由于篇幅原因无法展开来一一列举,有兴趣的朋友可以参考维基百科,里面讲的非常清晰。

2.漫画中红黑树调整过程的示例是一种比较复杂的情形,没太看明白的小伙伴也不必钻牛角尖,关键要懂得红黑树自平衡调整的主体思想。

—————END—————

喜欢本文的朋友们,欢迎长按下图关注订阅号程序员小灰,收看更多精彩内容

上一篇下一篇

猜你喜欢

热点阅读