OpenCv3.0 计算机视觉教程

简介

2018-08-14  本文已影响0人  很优秀的你

OpenCV(开源计算机视觉库 http://opencv.org ) 是一个开源的BSD许可库,包含数百种计算机视觉算法。 该文档描述了所谓的OpenCV 2.x API,它本质上是一个C ++ API,与基于C语言的OpenCV 1.x API有所差异。此文档针对于OpenCV 2.X API翻译,OPenCV 1.X API.pdf有关于C语言接口解释,敬请关注。

OpenCV具有模块化结构,这意味着该包包含多个共享库或静态库。 可以使用以下模块:

API 概述

cv Namespace

所有OpenCV类和函数都放在cv命名空间中。 因此,要从代码中访问此功能,请使用cv :: specifier或using namespace cv; 指示:

#include "opencv2/core.hpp"
...
cv::Mat H = cv::findHomography(points1, points2, CV_RANSAC, 5);
...

or :

#include "opencv2/core.hpp"
using namespace cv;
...
Mat H = findHomography(points1, points2, CV_RANSAC, 5 );
...

在遇到OpenCV外部名称可能与STL或其他库冲突。 在这种情况下,使用显式名称空间说明符来解决名称冲突:

Mat a(100, 100, CV_32F);
randu(a, Scalar::all(1), Scalar::all(std::rand()));
cv::log(a, a);
a /= std::log(2.);
Automatic Memory Management(内存自动管理)

OpenCV自动处理所有内存。

首先,函数和方法使用的std :: vector,Mat和其他数据结构都有析构函数,可以在需要时释放底层内存缓冲区。 这意味着析构函数并不总是释放缓冲区,就像Mat一样。 他们考虑了可能的数据共享。 析构函数递减与矩阵数据缓冲区关联的引用计数器。 当且仅当引用计数器达到零时,即当没有其他结构引用相同的缓冲区时,缓冲区被释放。 同样,复制Mat实例时,实际上并未复制任何实际数据。 相反,引用计数器递增以记住存在相同数据的另一个所有者。 还有Mat :: clone方法可以创建矩阵数据的完整副本。 请参阅以下示例:

 // create a big 8Mb matrix
Mat A(1000, 1000, CV_64F);
// create another header for the same matrix;
// this is an instant operation, regardless of the matrix size.
Mat B = A;
// create another header for the 3-rd row of A; no data is copied either
Mat C = B.row(3);
// now create a separate copy of the matrix
Mat D = B.clone();
// copy the 5-th row of B to C, that is, copy the 5-th row of A
// to the 3-rd row of A.
B.row(5).copyTo(C);
// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.
A = D;
// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,
// despite that C is just a single row of the original A
B.release();
// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();

你看到Mat和其他基本结构的使用很简单。 但是,如果不考虑自动内存管理而创建的高级类甚至用户数据类型呢? 对于他们来说,OpenCV提供的Ptr模板类与C ++ 11中的std :: shared_ptr类似。 所以,而不是使用普通指针:

T* ptr = new T(...);

你可以使用:

Ptr<T> ptr(new T(...));

or:

Ptr<T> ptr = makePtr<T>(...);

Ptr <T>封装指向T实例的指针和指针相关联的引用计数器。 有关详细信息,请参阅Ptr说明。

Automatic Allocation of the Output Data(输出数据的自动分配)

OpenCV自动释放内存,并在大多数时间自动为输出函数参数分配内存。 因此,如果函数具有一个或多个输入数组(cv :: Mat实例)和一些输出数组,则会自动分配或重新分配输出数组。 输出数组的大小和类型由输入数组的大小和类型决定。 如果需要,函数会采用额外的参数来帮助确定输出数组属性。
Example:

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
int main(int, char**)
{
    VideoCapture cap(0);
    if(!cap.isOpened()) return -1;
    Mat frame, edges;
    namedWindow("edges",1);
    for(;;)
    {
        cap >> frame;
        cvtColor(frame, edges, COLOR_BGR2GRAY);
        GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
        Canny(edges, edges, 0, 30, 3);
        imshow("edges", edges);
        if(waitKey(30) >= 0) break;
    }
    return 0;
}

由于视频帧分辨率和比特深度对于视频捕获模块是已知的,所以阵列帧由">>"运算符自动分配。 数组边缘由cvtColor函数自动分配。 它具有与输入数组相同的大小和位深度。 通道数为1,因为颜色转换代码COLOR_BGR2GRAY被传递,这意味着颜色到灰度转换。 请注意,在第一次执行循环体时,帧和边仅分配一次,因为所有下一个视频帧具有相同的分辨率。 如果以某种方式更改视频分辨率,则会自动重新分配数组。
该技术的关键组件是Mat :: create方法。 它需要所需的数组大小和类型。 如果数组已具有指定的大小和类型,则该方法不执行任何操作。 否则,它释放先前分配的数据(如果有的话)(这部分涉及递减引用计数器并将其与零比较),然后分配所需大小的新缓冲区。 大多数函数为每个输出数组调用Mat :: create方法,因此实现了自动输出数据分配。
这个方案的一些值得注意的特别之处是cv :: mixChannels,cv :: RNG :: fill,以及一些其他函数和方法。 它们无法分配输出数组,因此您必须提前执行此操作。

Saturation Arithmetics(饱和度技术)

作为一个计算机视觉库,OpenCV经常处理图像像素,这些像素通常以紧凑的,每通道8-bit或16-bit编码形式,因此具有有限的值范围。 此外,对图像的某些操作,如色彩空间转换,亮度/对比度调整,锐化,复杂插值(bi-cubic,Lanczos)可以产生超出可用范围的值。 如果只存储结果的最低8(16)bit,则会导致视觉伪像,并可能影响进一步的图像分析。 为了解决这个问题,使用所谓的饱和算术。 例如,要将操作结果r存储到8位图像,您会在0..255范围内找到最接近的值:

                     I(x,y)=min(max(round(r),0),255)

类似的规则适用于8-bit带符号的16-bit有符号和无符号类型。 这种语义在库中的任何地方都使用。 在C ++代码中,它使用类似于标准C ++强制转换操作的saturate_cast <>函数完成。 见下文上面提供的公式的实施:

   I.at<uchar>(y, x) = saturate_cast<uchar>(r);

其中cv :: uchar是OpenCV 8-bit无符号整数类型。 在优化的SIMD代码中,使用诸如paddusb,packuswb等SSE2指令。 它们有助于实现与C ++代码完全相同的行为。
Note
当结果为32位整数时,不应用饱和度。

Fixed Pixel Types. Limited Use of Templates(固定像素,受限模板)

模板是C ++的一个很好的特性,它可以实现非常强大,高效且安全的数据结构和算法。但是,广泛使用模板可能会大大增加编译时间和代码大小。此外,当专门使用模板时,很难将界面和实现分开。这对于基本算法来说可能很好,但对于计算机视觉库来说并不好,其中单个算法可能跨越数千行代码。正因为如此,并且为了简化其他开发语言的绑定,如Python,Java,Matlab,它们根本没有模板或具有有限的模板功能,当前的OpenCV实现基于多态和基于模板的运行时调度。在那些运行时调度太慢(像素访问运算符),不可能(通用Ptr <>实现)或非常不方便(saturate_cast <>())的地方,当前实现引入了小模板类,方法和函数。在当前OpenCV版本的任何其他地方,模板的使用都是有限的。
因此,库可以操作有限的固定原始数据类型集。 也就是说,数组元素应该具有以下类型之一:

可以使用以下选项指定Multi-channel (n-channel)类型:

使用OpenCV无法构造或处理具有更复杂元素的数组。 此外,每个函数或方法只能处理所有可能的数组类型的子集。 通常,算法越复杂,支持的格式子集越小。 请参阅下面这些限制的典型示例:

InputArray and OutputArray

许多OpenCV函数处理密集的二维或多维数组。 通常这样的函数将cppMat作为参数,但在某些情况下,使用std :: vector <>(如,对于点集)或Matx <>(对于3x3单应矩阵等)更方便。 为了避免API中的许多重复,引入了特殊的“代理”类。 基础“代理”类是InputArray。 它用于在函数输入上传递只读数组。 从InputArray类派生的OutputArray用于指定函数的输出数组。 通常你不应该关心那些中间类型(并且您不应该显示声明这些类型的变量) - 它们都将自动运行。 你可以假设你可以使用Mat,std :: vector <>,Matx <>,Vec <>或Scalar来代替InputArray / OutputArray。 当一个函数有一个可选的输入或输出数组,并且你没有或不想要一个时,传递cv :: noArray()。

Error Handling

OpenCV使用异常来表示严重错误。 当输入数据具有正确的格式并且属于指定的值范围,但算法由于某种原因不能成功时(例如,优化算法没有收敛),它返回一个特殊的错误代码(通常只是一个布尔变量)。
异常可以是cv :: Exception类或其派生类的实例。 反过来,cv :: Exception是std :: exception的衍生物。 因此,可以使用其他标准C ++库组件在代码中优雅地处理它。
异常通常使用CV_Error(错误代码,描述)宏或其类似printf的CV_Error_(错误代码,printf-spec,(printf-args))变体或使用检查条件和的CV_Assert(条件)宏来抛出异常。 不满意时抛出异常。 对于性能关键代码,CV_DbgAssert(条件)仅保留在Debug配置中。 由于自动内存管理,所有中间缓冲区在发生突然错误时会自动解除分配。 如果需要,您只需要添加一个try语句来捕获异常:

try
{
    ... // call OpenCV
 }
catch( cv::Exception& e )
{
    const char* err_msg = e.what();
    std::cout << "exception caught: " << err_msg << std::endl;
}
Multi-threading and Re-enterability

当前的OpenCV实现是完全可以重新输入的。 也就是说,可以从不同的线程调用相同的函数,类实例的相同常量方法或不同类实例的相同非常量方法。 此外,相同的cv :: Mat可以在不同的线程中使用,因为引用计数操作使用特定于体系结构的原子指令。

上一篇 下一篇

猜你喜欢

热点阅读