Python 运维Golang 开发者kubernetes

kube-scheduler 源码分析

2019-10-21  本文已影响0人  田飞雨

kube-scheduler 的设计

Kube-scheduler 是 kubernetes 的核心组件之一,也是所有核心组件之间功能比较单一的,其代码也相对容易理解。kube-scheduler 的目的就是为每一个 pod 选择一个合适的 node,整体流程可以概括为三步,获取未调度的 podList,通过执行一系列调度算法为 pod 选择一个合适的 node,提交数据到 apiserver,其核心则是一系列调度算法的设计与执行。

官方对 kube-scheduler 的调度流程描述 The Kubernetes Scheduler

For given pod:

    +---------------------------------------------+
    |               Schedulable nodes:            |
    |                                             |
    | +--------+    +--------+      +--------+    |
    | | node 1 |    | node 2 |      | node 3 |    |
    | +--------+    +--------+      +--------+    |
    |                                             |
    +-------------------+-------------------------+
                        |
                        |
                        v
    +-------------------+-------------------------+

    Pred. filters: node 3 doesn't have enough resource

    +-------------------+-------------------------+
                        |
                        |
                        v
    +-------------------+-------------------------+
    |             remaining nodes:                |
    |   +--------+                 +--------+     |
    |   | node 1 |                 | node 2 |     |
    |   +--------+                 +--------+     |
    |                                             |
    +-------------------+-------------------------+
                        |
                        |
                        v
    +-------------------+-------------------------+

    Priority function:    node 1: p=2
                          node 2: p=5

    +-------------------+-------------------------+
                        |
                        |
                        v
            select max{node priority} = node 2

kube-scheduler 目前包含两部分调度算法 predicates 和 priorities,首先执行 predicates 算法过滤部分 node 然后执行 priorities 算法为所有 node 打分,最后从所有 node 中选出分数最高的最为最佳的 node。

kube-scheduler 源码分析

kubernetes 版本: v1.16

kubernetes 中所有组件的启动流程都是类似的,首先会解析命令行参数、添加默认值,kube-scheduler 的默认参数在 k8s.io/kubernetes/pkg/scheduler/apis/config/v1alpha1/defaults.go 中定义的。然后会执行 run 方法启动主逻辑,下面直接看 kube-scheduler 的主逻辑 run 方法执行过程。

Run() 方法主要做了以下工作:

k8s.io/kubernetes/cmd/kube-scheduler/app/server.go:160

func Run(cc schedulerserverconfig.CompletedConfig, stopCh <-chan struct{}, registryOptions ...Option) error {
    ......
    // 1、初始化 scheduler 对象
    sched, err := scheduler.New(......)
    if err != nil {
        return err
    }

    // 2、启动事件广播
    if cc.Broadcaster != nil && cc.EventClient != nil {
        cc.Broadcaster.StartRecordingToSink(stopCh)
    }
    if cc.LeaderElectionBroadcaster != nil && cc.CoreEventClient != nil {
        cc.LeaderElectionBroadcaster.StartRecordingToSink(&corev1.EventSinkImpl{Interface: cc.CoreEventClient.Events("")})
    }

    ......
    // 3、启动 http server
    if cc.InsecureServing != nil {
        separateMetrics := cc.InsecureMetricsServing != nil
        handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, separateMetrics, checks...), nil, nil)
        if err := cc.InsecureServing.Serve(handler, 0, stopCh); err != nil {
            return fmt.Errorf("failed to start healthz server: %v", err)
        }
    }
    ......
    // 4、启动所有 informer
    go cc.PodInformer.Informer().Run(stopCh)
    cc.InformerFactory.Start(stopCh)

    cc.InformerFactory.WaitForCacheSync(stopCh)

    run := func(ctx context.Context) {
        sched.Run()
        <-ctx.Done()
    }

    ctx, cancel := context.WithCancel(context.TODO()) // TODO once Run() accepts a context, it should be used here
    defer cancel()
    go func() {
        select {
        case <-stopCh:
            cancel()
        case <-ctx.Done():
        }
    }()

    // 5、选举 leader
    if cc.LeaderElection != nil {
        ......
    }
    // 6、执行 sched.Run() 方法
    run(ctx)
    return fmt.Errorf("finished without leader elect")
}

下面看一下 scheduler.New() 方法是如何初始化 scheduler 结构体的,该方法主要的功能是初始化默认的调度算法以及默认的调度器 GenericScheduler。

k8s.io/kubernetes/pkg/scheduler/scheduler.go:166

func New(......) (*Scheduler, error) {
    ......
    // 1、创建 scheduler 的配置文件
    configurator := factory.NewConfigFactory(&factory.ConfigFactoryArgs{
        ......
    })
    var config *factory.Config
    source := schedulerAlgorithmSource
    // 2、加载默认的调度算法
    switch {
    case source.Provider != nil:
        // 使用默认的 ”DefaultProvider“ 初始化 config
        sc, err := configurator.CreateFromProvider(*source.Provider)
        if err != nil {
            return nil, fmt.Errorf("couldn't create scheduler using provider %q: %v", *source.Provider, err)
        }
        config = sc
    case source.Policy != nil:
        // 通过启动时指定的 policy source 加载 config
        ......
        config = sc
    default:
        return nil, fmt.Errorf("unsupported algorithm source: %v", source)
    }
    // Additional tweaks to the config produced by the configurator.
    config.Recorder = recorder
    config.DisablePreemption = options.disablePreemption
    config.StopEverything = stopCh

    // 3.创建 scheduler 对象
    sched := NewFromConfig(config)
    ......
    return sched, nil
}

下面是 pod informer 的启动逻辑,只监听 status.phase 不为 succeeded 以及 failed 状态的 pod,即非 terminating 的 pod。

k8s.io/kubernetes/pkg/scheduler/factory/factory.go:527

func NewPodInformer(client clientset.Interface, resyncPeriod time.Duration) coreinformers.PodInformer {
    selector := fields.ParseSelectorOrDie(
        "status.phase!=" + string(v1.PodSucceeded) +
            ",status.phase!=" + string(v1.PodFailed))
    lw := cache.NewListWatchFromClient(client.CoreV1().RESTClient(), string(v1.ResourcePods), metav1.NamespaceAll, selector)
    return &podInformer{
        informer: cache.NewSharedIndexInformer(lw, &v1.Pod{}, resyncPeriod, cache.Indexers{cache.NamespaceIndex: cache.MetaNamespaceIndexFunc}),
    }
}

然后继续看 Run() 方法中最后执行的 sched.Run() 调度循环逻辑,若 informer 中的 cache 同步完成后会启动一个循环逻辑执行 sched.scheduleOne 方法。

k8s.io/kubernetes/pkg/scheduler/scheduler.go:313

func (sched *Scheduler) Run() {
    if !sched.config.WaitForCacheSync() {
        return
    }

    go wait.Until(sched.scheduleOne, 0, sched.config.StopEverything)
}

scheduleOne() 每次对一个 pod 进行调度,主要有以下步骤:

k8s.io/kubernetes/pkg/scheduler/scheduler.go:515

func (sched *Scheduler) scheduleOne() {
    fwk := sched.Framework

    pod := sched.NextPod()
    if pod == nil {
        return
    }
    // 1.判断 pod 是否处于删除状态
    if pod.DeletionTimestamp != nil {
        ......
    }

    // 2.执行调度策略选择 node
    start := time.Now()
    pluginContext := framework.NewPluginContext()
    scheduleResult, err := sched.schedule(pod, pluginContext)
    if err != nil {
        if fitError, ok := err.(*core.FitError); ok {
            // 3.若启用抢占机制则执行
            if sched.DisablePreemption {
                ......
            } else {
                preemptionStartTime := time.Now()
                sched.preempt(pluginContext, fwk, pod, fitError)
                ......
            }
            ......
            metrics.PodScheduleFailures.Inc()
        } else {
            klog.Errorf("error selecting node for pod: %v", err)
            metrics.PodScheduleErrors.Inc()
        }
        return
    }
    ......
    assumedPod := pod.DeepCopy()

    // 4.判断是否需要 VolumeScheduling 特性
    allBound, err := sched.assumeVolumes(assumedPod, scheduleResult.SuggestedHost)
    if err != nil {
        klog.Errorf("error assuming volumes: %v", err)
        metrics.PodScheduleErrors.Inc()
        return
    }

    // 5.执行 "reserve" plugins
    if sts := fwk.RunReservePlugins(pluginContext, assumedPod, scheduleResult.SuggestedHost); !sts.IsSuccess() {
        .....
    }

    // 6.为 pod 设置 NodeName 字段,更新 scheduler 缓存
    err = sched.assume(assumedPod, scheduleResult.SuggestedHost)
    if err != nil {
        ......
    }

    // 7.异步请求 apiserver
    go func() {
        // Bind volumes first before Pod
        if !allBound {
            err := sched.bindVolumes(assumedPod)
            if err != nil {
                ......
                return
            }
        }

        // 8.执行 "permit" plugins
        permitStatus := fwk.RunPermitPlugins(pluginContext, assumedPod, scheduleResult.SuggestedHost)
        if !permitStatus.IsSuccess() {
            ......
        }
        // 9.执行 "prebind" plugins
        preBindStatus := fwk.RunPreBindPlugins(pluginContext, assumedPod, scheduleResult.SuggestedHost)
        if !preBindStatus.IsSuccess() {
            ......
        }
        err := sched.bind(assumedPod, scheduleResult.SuggestedHost, pluginContext)
        ......
        if err != nil {
            ......
        } else {
            ......
            // 10.执行 "postbind" plugins
            fwk.RunPostBindPlugins(pluginContext, assumedPod, scheduleResult.SuggestedHost)
        }
    }()
}

scheduleOne() 中通过调用 sched.schedule() 来执行预选与优选算法处理:

k8s.io/kubernetes/pkg/scheduler/scheduler.go:337

func (sched *Scheduler) schedule(pod *v1.Pod, pluginContext *framework.PluginContext) (core.ScheduleResult, error) {
    result, err := sched.Algorithm.Schedule(pod, pluginContext)
    if err != nil {
        ......
    }
    return result, err
}

sched.Algorithm 是一个 interface,主要包含四个方法,GenericScheduler 是其具体的实现:

k8s.io/kubernetes/pkg/scheduler/core/generic_scheduler.go:131

type ScheduleAlgorithm interface {
    Schedule(*v1.Pod, *framework.PluginContext) (scheduleResult ScheduleResult, err error)
    Preempt(*framework.PluginContext, *v1.Pod, error) (selectedNode *v1.Node, preemptedPods []*v1.Pod, cleanupNominatedPods []*v1.Pod, err error)
    Predicates() map[string]predicates.FitPredicate
    Prioritizers() []priorities.PriorityConfig
}

kube-scheduler 提供的默认调度为 DefaultProvider,DefaultProvider 配置的 predicates 和 priorities policies 在 k8s.io/kubernetes/pkg/scheduler/algorithmprovider/defaults/defaults.go 中定义,算法具体实现是在 k8s.io/kubernetes/pkg/scheduler/algorithm/predicates/k8s.io/kubernetes/pkg/scheduler/algorithm/priorities/ 中,默认的算法如下所示:

pkg/scheduler/algorithmprovider/defaults/defaults.go

func defaultPredicates() sets.String {
    return sets.NewString(
        predicates.NoVolumeZoneConflictPred,
        predicates.MaxEBSVolumeCountPred,
        predicates.MaxGCEPDVolumeCountPred,
        predicates.MaxAzureDiskVolumeCountPred,
        predicates.MaxCSIVolumeCountPred,
        predicates.MatchInterPodAffinityPred,
        predicates.NoDiskConflictPred,
        predicates.GeneralPred,
        predicates.CheckNodeMemoryPressurePred,
        predicates.CheckNodeDiskPressurePred,
        predicates.CheckNodePIDPressurePred,
        predicates.CheckNodeConditionPred,
        predicates.PodToleratesNodeTaintsPred,
        predicates.CheckVolumeBindingPred,
    )
}

func defaultPriorities() sets.String {
    return sets.NewString(
        priorities.SelectorSpreadPriority,
        priorities.InterPodAffinityPriority,
        priorities.LeastRequestedPriority,
        priorities.BalancedResourceAllocation,
        priorities.NodePreferAvoidPodsPriority,
        priorities.NodeAffinityPriority,
        priorities.TaintTolerationPriority,
        priorities.ImageLocalityPriority,
    )
}

下面继续看 sched.Algorithm.Schedule() 调用具体调度算法的过程:

k8s.io/kubernetes/pkg/scheduler/core/generic_scheduler.go:186

func (g *genericScheduler) Schedule(pod *v1.Pod, pluginContext *framework.PluginContext) (result ScheduleResult, err error) {
    ......
    // 1.检查 pod pvc
    if err := podPassesBasicChecks(pod, g.pvcLister); err != nil {
        return result, err
    }

    // 2.执行 "prefilter" plugins
    preFilterStatus := g.framework.RunPreFilterPlugins(pluginContext, pod)
    if !preFilterStatus.IsSuccess() {
        return result, preFilterStatus.AsError()
    }

    // 3.获取 node 数量
    numNodes := g.cache.NodeTree().NumNodes()
    if numNodes == 0 {
        return result, ErrNoNodesAvailable
    }

    // 4.快照 node 信息
    if err := g.snapshot(); err != nil {
        return result, err
    }

    // 5.执行预选算法
    startPredicateEvalTime := time.Now()
    filteredNodes, failedPredicateMap, filteredNodesStatuses, err := g.findNodesThatFit(pluginContext, pod)
    if err != nil {
        return result, err
    }
    // 6.执行 "postfilter" plugins
    postfilterStatus := g.framework.RunPostFilterPlugins(pluginContext, pod, filteredNodes, filteredNodesStatuses)
    if !postfilterStatus.IsSuccess() {
        return result, postfilterStatus.AsError()
    }

    // 7.预选后没有合适的 node 直接返回
    if len(filteredNodes) == 0 {
        ......
    }

    startPriorityEvalTime := time.Now()
    // 8.若只有一个 node 则直接返回该 node
    if len(filteredNodes) == 1 {
        return ScheduleResult{
            SuggestedHost:  filteredNodes[0].Name,
            EvaluatedNodes: 1 + len(failedPredicateMap),
            FeasibleNodes:  1,
        }, nil
    }

    // 9.获取 pod meta 信息,执行优选算法
    metaPrioritiesInterface := g.priorityMetaProducer(pod, g.nodeInfoSnapshot.NodeInfoMap)
    priorityList, err := PrioritizeNodes(pod, g.nodeInfoSnapshot.NodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders, g.framework,      pluginContext)
    if err != nil {
        return result, err
    }

    // 10.根据打分选择最佳的 node
    host, err := g.selectHost(priorityList)
    trace.Step("Selecting host done")
    return ScheduleResult{
        SuggestedHost:  host,
        EvaluatedNodes: len(filteredNodes) + len(failedPredicateMap),
        FeasibleNodes:  len(filteredNodes),
    }, err
}

至此,scheduler 的整个过程分析完毕。

总结

本文主要对于 kube-scheduler v1.16 的调度流程进行了分析,但其中有大量的细节都暂未提及,包括预选算法以及优选算法的具体实现、优先级与抢占调度的实现、framework 的使用及实现,因篇幅有限,部分内容会在后文继续说明。

参考:

The Kubernetes Scheduler
scheduling design proposals

上一篇 下一篇

猜你喜欢

热点阅读