WorldLink Machine Learning Research Institute机器学习与数据挖掘Python语言与信息数据获取和机器学习

机器学习笔记第一天Machine Learning one da

2017-10-26  本文已影响30人  Adapa

What's the Machine learn?

01.What's the learning?

learning one learning two

what's the kill?

improve some performance measure
提高一些绩效

从Data出发,经过机器的学习,得到技能的加强


Kill KILL=量化投资

Why use machine learning?

of example

这张图里面是什么?


这张图里面是什么?

如何定义树?如何让程序识别树?

你是这么认识树的?
不是你父母告诉你特征而是你的观察
而是你看来很多树(●'◡'●)
你眼睛的观察

1.exists some 'underlying pattern' to be learned
--so 'performance measure' can be improved
2.but no programmable(easy)definition
--so 'ML' is needed
3.somehow there is data about the pattern
--so ML has some 'inputs' to learn from

看看冰山一角ML的应用

01.Food(Sadilek et al.2013)
data:Twitter data(words+location)
skill:tell food poisoning likeliness of restaurant properly
2.Clothing(Abu-Mostafa,2012)
data:sales figures + client surveys
skill:give good fashion recommendations to clients
3.Housing(Tsansa and Xifara,2012)
data:characteristics of buildings and their energy load
skill:predict energy load of other buildings clousely
4.Transportation(Stallkamp et al,2012)
data:some traffic sign images and meanings
skill:recognize traffic signs accurately

ML is everywhere!

A Possible ML Solution

answer correctly ≈ [recent strngth of student > difficulty of question]
1.give ML 9 million records form 3000 students
2. ML determines (reverse-engineers)strength and difficulty automatically

电影推荐系统构想

特征

特征

机器学习深入:

example:
用户信用评估&行用卡发行:
data:


data

Basic Notations


ML输入X
ML输出Y
目标函数F
data

Data <=> training examples: D={(x1,x1),(x2,y2).....(Xn,Yn)}
(historical records in bank)


hypothesis
G:x->y
ML ML NOTE ML ML
上一篇 下一篇

猜你喜欢

热点阅读