深度学习

波士顿房价总结

2019-03-23  本文已影响0人  庵下桃花仙

1、加载数据集;
2、准备数据;
3、模型定义;
4、K折验证;
5、绘制验证分数;
6、训练最终模型。

# 加载波士顿房价数据
from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()

# 准备数据
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std

# 模型定义
from keras import models
from keras import layers

def build_model():
    model = models.Sequential() # 因为需要将同一个模型多次实例化,所以用一个函数来构建模型
    model.add(layers.Dense(64, activation='relu',
                           input_shape=(train_data.shape[1],)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(1)) # 无激活函数,标量回归的典型设置
    model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
    return  model

'''
# k 折验证
import numpy as np

k = 4 # 4折
num_val_sample = len(train_data) // 4
num_epochs = 100
all_scores = []

for i in range(k):
    print('processing fold #', i)
    # 准备验证数据,第k个分区的数据
    val_data = train_data[i * num_val_sample: (i + 1) * num_val_sample]
    val_targets = train_targets[i * num_val_sample: (i + 1) * num_val_sample]

    # 准备训练数据:其它所有分区的数据
    partial_train_data = np.concatenate([train_data[:i * num_val_sample],
                                         train_data[(i + 1) * num_val_sample:]],
                                        axis=0)
    partial_train_targets = np.concatenate([train_targets[:i * num_val_sample],
                                         train_targets[(i + 1) * num_val_sample:]],
                                        axis=0)

    model = build_model() # 构建Keras模型(已编译)
    model.fit(partial_train_data, partial_train_targets,
              epochs=num_epochs, batch_size=1, verbose=0) # 训练模型(静默模式,verbose=0)
    val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) # 在验证数据上评估模型
    all_scores.append(val_mae)

print(all_scores)
print(np.mean(all_scores))
'''


# 保存每折的验证结果
import numpy as np

k = 4 # 4折
num_val_samples = len(train_data) // 4
num_epochs = 500
all_mae_histories = []
for i in range(k):
    print('processing fold #', i)
    # 准备验证数据,第k个分区的数据
    val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
    val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]

    # 准备训练数据:其它所有分区的数据
    partial_train_data = np.concatenate([train_data[:i * num_val_samples],
                                         train_data[(i + 1) * num_val_samples:]],
                                        axis=0)
    partial_train_targets = np.concatenate([train_targets[:i * num_val_samples],
                                            train_targets[
                                            (i + 1) * num_val_samples:]],
                                           axis=0)

    model = build_model() # 构建keras模型(已编译)
    history = model.fit(partial_train_data, partial_train_targets,
                        validation_data=(val_data, val_targets),
                        epochs=num_epochs, batch_size=1, verbose=0)
    mae_history = history.history['val_mean_absolute_error']
    all_mae_histories.append(mae_history)

# 计算所有轮次中的K折验证分数平均值
average_mae_history = [
    np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)
]

# 绘制验证分数
import matplotlib.pyplot as plt
plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

# 绘制验证分数(删除前10个数据点)
def smooth_curve(points, factor=0.9):
    smoothed_points = []
    for point in points:
        if smoothed_points:
            previous = smoothed_points[-1]
            smoothed_points.append(previous * factor + point * (1 - factor))
        else:
            smoothed_points.append(point)
    return smoothed_points

smooth_mae_history = smooth_curve(average_mae_history[10:])

plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
plt.xlabel('Epochs')
plt.ylabel('Validation MAE')
plt.show()

'''
# 训练最终模型
model = build_model() # 一个全新的编译好的模型
model.fit(train_data, train_targets,
          epochs=80, batch_size=16, verbose=0) # 在所有训练数据上训练模型
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
print(test_mae_score)
'''

哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈

上一篇 下一篇

猜你喜欢

热点阅读