生信Python

利用Python进行数据分析(11)-高阶应用category

2020-05-17  本文已影响0人  皮皮大

本文中介绍的是pandas的高阶应用-分类数据category​

image

分裂数据Categorical

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

使用背景和目标

一个列中经常会包含重复值,这些重复值是一个小型的不同值的集合。

unique()value_counts()能够从数组中提取到不同的值并分别计算它们的频率

values = pd.Series(["apple","orange","apple","apple"] * 2)
values
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
dtype: object
pd.unique(values)   # 查看不同的取值情况
array(['apple', 'orange'], dtype=object)
pd.value_counts(values)  # 查看每个值的个数
apple     6
orange    2
dtype: int64

维度表

维度表包含了不同的值,将主要观测值存储为引用维度表的整数键

values = pd.Series([0,1,0,0] * 2)

dim = pd.Series(["apple","orange"])
values

0    0
1    1
2    0
3    0
4    0
5    1
6    0
7    0
dtype: int64
dim

0     apple
1    orange
dtype: object

take方法-分类(字典编码展现)

不同值的数组被称之为数据的类别、字典或者层级

dim.take(values)

0     apple
1    orange
0     apple
0     apple
0     apple
1    orange
0     apple
0     apple
dtype: object

使用Categorical类型

fruits = ["apple","orange","apple","apple"] * 2
N = len(fruits)
df = pd.DataFrame({"fruit":fruits,  # 指定每列的取值内容
                  "basket_id":np.arange(N),
                  "count":np.random.randint(3,15,size=N),
                  "weight":np.random.uniform(0,4,size=N)},
                 columns=["basket_id","fruit","count","weight"])  # 4个属性值

df

image.png
df["fruit"]

0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: object

如何生成Categorical实例

fruit_cat = df["fruit"].astype("category")  # 调用函数改变
fruit_cat   # 变成pd.Categorical的实例

0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]
c = fruit_cat.values
c
[apple, orange, apple, apple, apple, orange, apple, apple]
Categories (2, object): [apple, orange]

<span class="burk">两个属性:categories + codes</span>

print(c.categories)
print("-----")
print(c.codes)
Index(['apple', 'orange'], dtype='object')
-----
[0 1 0 0 0 1 0 0]
# 将DF的一列转成Categorical对象
df["fruit"] = df["fruit"].astype("category")
df.fruit
0     apple
1    orange
2     apple
3     apple
4     apple
5    orange
6     apple
7     apple
Name: fruit, dtype: category
Categories (2, object): [apple, orange]

从其他序列生成pd.Categorical对象

my_categories = pd.Categorical(['foo','bar','baz','foo','bar'])
my_categories
[foo, bar, baz, foo, bar]
Categories (3, object): [bar, baz, foo]

已知分类编码数据的情况:from_codes

categories = ["foo","bar","baz"]
codes = [0,1,0,0,1,0,1,0]
my_code = pd.Categorical.from_codes(codes,categories)
my_code
[foo, bar, foo, foo, bar, foo, bar, foo]
Categories (3, object): [foo, bar, baz]

<span class="mark">显式指定分类顺序:ordered = True</span>

如果不指定顺序,分类转换是无序的。我们可以自己显式地指定

ordered_cat = pd.Categorical.from_codes(codes,categories  # 指定分类用的数据
                                       ,ordered=True)
ordered_cat
[foo, bar, foo, foo, bar, foo, bar, foo]
Categories (3, object): [foo < bar < baz]

未排序的实例通过as_ordered排序

# 未排序的实例通过as_ordered来进行排序
my_categories.as_ordered()

[foo, bar, baz, foo, bar]
Categories (3, object): [bar < baz < foo]

Categorical对象来进行计算

np.random.seed(12345)  # 设置随机种子
draws = np.random.randn(1000)
draws[:5]
array([-0.20470766,  0.47894334, -0.51943872, -0.5557303 ,  1.96578057])

qcut()函数-四分位数

# 计算四位分箱
bins = pd.qcut(draws,4)
bins
[(-0.684, -0.0101], (-0.0101, 0.63], (-0.684, -0.0101], (-0.684, -0.0101], (0.63, 3.928], ..., (-0.0101, 0.63], (-0.684, -0.0101], (-2.9499999999999997, -0.684], (-0.0101, 0.63], (0.63, 3.928]]
Length: 1000
Categories (4, interval[float64]): [(-2.9499999999999997, -0.684] < (-0.684, -0.0101] < (-0.0101, 0.63] < (0.63, 3.928]]

四分位数名称 labels

bins = pd.qcut(draws,4,labels=["Q1","Q2","Q3","Q4"])
bins

[Q2, Q3, Q2, Q2, Q4, ..., Q3, Q2, Q1, Q3, Q4]
Length: 1000
Categories (4, object): [Q1 < Q2 < Q3 < Q4]
bins.codes[:10]

array([1, 2, 1, 1, 3, 3, 2, 2, 3, 3], dtype=int8)

结合groupby提取汇总信息

bins = pd.Series(bins, name="quartile")
results = (pd.Series(draws)
          .groupby(bins)
          .agg(["count","min","max"]).reset_index()
          )
results
image.png
results["quartile"]  # 保留原始中的分类信息
0    Q1
1    Q2
2    Q3
3    Q4
Name: quartile, dtype: category
Categories (4, object): [Q1 < Q2 < Q3 < Q4]

分类提高性能

如果在特定的数据集上做了大量的数据分析,将数据转成分类数据有大大提高性能

N = 10000000
draws = pd.Series(np.random.randn(N))
labels = pd.Series(["foo","bar","baz","qux"] * (N // 4))
labels
0          foo
1          bar
2          baz
3          qux
4          foo
          ... 
9999995    qux
9999996    foo
9999997    bar
9999998    baz
9999999    qux
Length: 10000000, dtype: object

转成分类数据

# 转成分类数据
categories = labels.astype("category")
categories
0          foo
1          bar
2          baz
3          qux
4          foo
          ... 
9999995    qux
9999996    foo
9999997    bar
9999998    baz
9999999    qux
Length: 10000000, dtype: category
Categories (4, object): [bar, baz, foo, qux]

内存比较

labels.memory_usage()
80000128
categories.memory_usage()

10000320

分类转换的开销

%time _ = labels.astype("category")

CPU times: user 374 ms, sys: 34.8 ms, total: 409 ms
Wall time: 434 ms

<span class="burk">分类方法</span>

s = pd.Series(["a","b","c","d"] * 2)
cat_s = s.astype("category")
cat_s

0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): [a, b, c, d]

cat属性

特殊属性cat提供了对分类方法的访问

cat_s.cat.codes

0    0
1    1
2    2
3    3
4    0
5    1
6    2
7    3
dtype: int8
cat_s.cat.categories

Index(['a', 'b', 'c', 'd'], dtype='object')

数据的实际类别超出给定的个数

actual_categories = ["a","b","c","d","e"]
cat_s2 = cat_s.cat.set_categories(actual_categories)
cat_s2

0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (5, object): [a, b, c, d, e]
cat_s2.value_counts()

d    2
c    2
b    2
a    2
e    0
dtype: int64

去除不在数据中的类别

cat_s3 = cat_s[cat_s.isin(["a","b"])]
cat_s3

0    a
1    b
4    a
5    b
dtype: category
Categories (4, object): [a, b, c, d]
# c、d没有出现,直接删除
cat_s3.cat.remove_unused_categories()

0    a
1    b
4    a
5    b
dtype: category
Categories (2, object): [a, b]

如何创建虚拟变量:get_dummies()

在机器学习或统计数据中,通常需要将分类数据转成虚拟变量,也称之为one-hot编码

cat_s = pd.Series(["a","b","c","d"] * 2, dtype="category")
cat_s

0    a
1    b
2    c
3    d
4    a
5    b
6    c
7    d
dtype: category
Categories (4, object): [a, b, c, d]
pd.get_dummies(cat_s)

image.png
上一篇 下一篇

猜你喜欢

热点阅读