AQS源码浅析(5)——锁方法
2022-04-07 本文已影响0人
墨_0b54
acquireQueued条件等待方法及独占模式获取
- 调用acquireQueued方法时,至少有一个node(就是参数中的node)在队列
- 同时可能有【新入队的线程】或者【由中断唤醒的线程】会与【当前线程】产生竞争
- 当前驱节点是head时,就是出队的时机
- 获取锁失败后会调用shouldParkAfterFailedAcquire(详细见下文)方法
- 如果退出自旋却未获得锁,说明出现了未知的异常,需要调用cancelAcquire(详细见下文)方法将当前节点取消
final boolean acquireQueued(final Node node, int arg) { //自旋获得锁,会阻塞当前线程
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//前驱节点
if (p == head && tryAcquire(arg)) {//前驱节点是头节点就获取锁
setHead(node); //成功获取锁(其他线程失败,都会阻塞),当前node出队
p.next = null; // help GC
failed = false;
return interrupted; //如果在竞争锁的过程中发生了中断,返回true
}
//线程获取锁失败后的操作
if (shouldParkAfterFailedAcquire(p, node) &&//判断线程获取锁失败后,是否应该阻塞
parkAndCheckInterrupt()) //阻塞线程,并在被唤醒后检查是否被中断
interrupted = true;
}
} finally {
if (failed) // tryAcquire发生未知的错误导致线程退出自旋,shouldParkAfterFailedAcquire、parkAndCheckInterrupt应该不会出错
cancelAcquire(node); //取消当前线程
}
}
shouldParkAfterFailedAcquire检查和更新获取锁失败的节点的状态
- 是所有acquire循环中的主要控制信号,检查并更新未能获取锁的节点的状态,要求pred必须是node的前驱节点
- 如果线程前驱节点状态是SIGNAL,那么可以安全的应该阻塞,返回 true
- 如果线程状态为CANCELLED,去除前面所有的已取消的节点(head节点一定不是CANCELLED)返回false
- 如果节点状态是0或者PROPAGATE的时候,将前驱状态设置为SIGNAL,那么下次循环获取锁失败后进入这个方法时,将会返回true
- 也就是说线程如果获取锁失败,在正常情况下前驱节点都应该是SIGNAL,代表自己准备好被唤醒了
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) //pred节点是SIGNAL状态表示node应该被唤醒,当前node可以安全的阻塞,返回true
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) { //跳过CANCELLED状态的前驱节点
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {//pred的waitStatus一定是0 或者 PROPAGATE,说明当前节点不需要阻塞,调用者需要重试
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL); //前驱节点状态设置为SIGNAL
}
return false;
}
cancelAcquire取消节点尝试acquire
取消当前节点,如果节点在队列的中间就从队列中去掉,否则直接唤醒一个有效的后继节点
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)
return;
node.thread = null;//清除线程对象
// Skip cancelled predecessors
Node pred = node.prev;
while (pred.waitStatus > 0) //跳过已取消的前驱节点
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other threads.
node.waitStatus = Node.CANCELLED;//不会有其他线程干扰,这一步后其他线程会跳过
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) { //如果node已经在队尾,设置尾节点
compareAndSetNext(pred, predNext, null);//更新pred的next指针为null
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head && //确定node前驱节点不是head,说明现在node已经不在队首了
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && //前驱状态小于0,或者将未取消的前驱设置为SIGNAL状态(标记后继节点需要唤醒)
pred.thread != null) {//前驱拥有线程对象
Node next = node.next;//if判断前驱节点不是虚节点
if (next != null && next.waitStatus <= 0) //判断后继有效
compareAndSetNext(pred, predNext, next);//连接node的前驱和后继
} else {//如果node的前驱是虚节点,唤醒一个后继
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
cancelAcquire与shouldParkAfterFailedAcquire一样,都有一段跳过CANCELLED状态的代码如下:
Node pred = node.prev;
while (pred.waitStatus > 0) //跳过已取消的前驱节点
node.prev = pred = pred.prev;
为什么这里不需要用CAS呢?
- 首先只有线程可以把自己的节点状态设置为CANCELLED
- 其他的线程执行这段代码时,会直接跳过CANCELLED状态的节点
- 所以取消的线程与其他线程不会互相干扰
这也是cancelAcquire的逻辑:
- 如果头部同时有好几个节点取消,那么唤醒操作交给next链靠后的取消节点即可
- 如果在队列中间取消,那么只需要最靠后的节点连接未取消的前驱和后驱即可
- 如果在队列尾部取消,那么只需要最靠前的节点将前驱设置为尾部即可
doAcquireNanos和doAcquireInterruptibly
- doAcquireNanos与acquireQueued的区别是加入了超时时间限制,超时直接取消节点
- doAcquireInterruptibly与acquireQueued的区别是响应中断,发生中断直接取消节点并抛中断异常
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
doAcquireShared共享不可中断模式获取锁
共享模式的acquireQueued,doAcquireShared与acquireQueued的区别是会传播唤醒后继节点
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);//共享节点入队
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {//代表获取成功
setHeadAndPropagate(node, r);//node变成头节点,传播唤醒后继
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
doAcquireSharedInterruptibly和doAcquireSharedNanos
- doAcquireSharedNanos与doAcquireShared的区别是加入了超时时间限制,超时直接取消节点
- doAcquireSharedInterruptibly与doAcquireShared的区别是响应中断,发生中断直接取消节点并抛中断异常
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}