Block底层代码
这里只简单列举block底层用到的部分函数
_Block_copy
// Copy, or bump refcount, of a block. If really copying, call the copy helper if present.
// 拷贝 block,
// 如果原来就在堆上,就将引用计数加 1;
// 如果原来在栈上,会拷贝到堆上,引用计数初始化为 1,并且会调用 copy helper 方法(如果存在的话);
// 如果 block 在全局区,不用加引用计数,也不用拷贝,直接返回 block 本身
// 参数 arg 就是 Block_layout 对象,
// 返回值是拷贝后的 block 的地址
void *_Block_copy(const void *arg) {
struct Block_layout *aBlock;
// 如果 arg 为 NULL,直接返回 NULL
if (!arg) return NULL;
// The following would be better done as a switch statement
// 强转为 Block_layout 类型
aBlock = (struct Block_layout *)arg;
// 如果现在已经在堆上
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
// 就只将引用计数加 1
latching_incr_int(&aBlock->flags);
return aBlock;
}
// 如果 block 在全局区,不用加引用计数,也不用拷贝,直接返回 block 本身
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
else {
// Its a stack block. Make a copy.
// block 现在在栈上,现在需要将其拷贝到堆上
// 在堆上重新开辟一块和 aBlock 相同大小的内存
struct Block_layout *result =
(struct Block_layout *)malloc(aBlock->descriptor->size);
// 开辟失败,返回 NULL
if (!result) return NULL;
// 将 aBlock 内存上的数据全部移到新开辟的 result 上
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#endif
// reset refcount
// 将 flags 中的 BLOCK_REFCOUNT_MASK 和 BLOCK_DEALLOCATING 部分的位全部清为 0
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
// 将 result 标记位在堆上,需要手动释放;并且引用计数初始化为 1
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
// copy 方法中会调用做拷贝成员变量的工作
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
// isa 指向 _NSConcreteMallocBlock
result->isa = _NSConcreteMallocBlock;
return result;
}
}
_Block_byref_copy
// Runtime entry points for maintaining the sharing knowledge of byref data blocks.
// A closure has been copied and its fixup routine is asking us to fix up the reference to the shared byref data
// Closures that aren't copied must still work, so everyone always accesses variables after dereferencing the forwarding ptr.
// We ask if the byref pointer that we know about has already been copied to the heap, and if so, increment and return it.
// Otherwise we need to copy it and update the stack forwarding pointer
static struct Block_byref *_Block_byref_copy(const void *arg) {
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
_Block_byref_release
static void _Block_byref_release(const void *arg) {
struct Block_byref *byref = (struct Block_byref *)arg;
// dereference the forwarding pointer since the compiler isn't doing this anymore (ever?)
byref = byref->forwarding;
if (byref->flags & BLOCK_BYREF_NEEDS_FREE) {
int32_t refcount = byref->flags & BLOCK_REFCOUNT_MASK;
os_assert(refcount);
if (latching_decr_int_should_deallocate(&byref->flags)) {
if (byref->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
struct Block_byref_2 *byref2 = (struct Block_byref_2 *)(byref+1);
(*byref2->byref_destroy)(byref);
}
free(byref);
}
}
}
_Block_release
// API entry point to release a copied Block
// 对 block 做 release 操作。
// block 在堆上,才需要 release,在全局区和栈区都不需要 release.
// 先将引用计数减 1,如果引用计数减到了 0,就将 block 销毁
void _Block_release(const void *arg) {
struct Block_layout *aBlock = (struct Block_layout *)arg;
// 如果 block == nil
if (!aBlock) return;
// 如果 block 在全局区
if (aBlock->flags & BLOCK_IS_GLOBAL) return;
// block 不在堆上
if (! (aBlock->flags & BLOCK_NEEDS_FREE)) return;
// 引用计数减 1,如果引用计数减到了 0,会返回 true,表示 block 需要被销毁
if (latching_decr_int_should_deallocate(&aBlock->flags)) {
// 调用 block 的 dispose helper,dispose helper 方法中会做诸如销毁 byref 等操作
_Block_call_dispose_helper(aBlock);
// _Block_destructInstance 啥也不干,函数体是空的
_Block_destructInstance(aBlock);
free(aBlock);
}
}
_Block_tryRetain
// 尝试 retain block。当 block 不是处于 dealloc 时,引用计数加 1
// 返回值是是否成功,只有在 block 处于 deallocating 时,才会失败
bool _Block_tryRetain(const void *arg) {
struct Block_layout *aBlock = (struct Block_layout *)arg;
return latching_incr_int_not_deallocating(&aBlock->flags);
}
_Block_isDeallocating
// 判断 block 是否处于 deallocating 状态
bool _Block_isDeallocating(const void *arg) {
struct Block_layout *aBlock = (struct Block_layout *)arg;
return (aBlock->flags & BLOCK_DEALLOCATING) != 0;
}
/************************************************************
*
* SPI used by other layers
*
***********************************************************/
// 取得 block 的完整大小
size_t Block_size(void *aBlock) {
return ((struct Block_layout *)aBlock)->descriptor->size;
}
// 如果 block 的返回值在栈上,则返回 TRUE,反之返回 FALSE
bool _Block_use_stret(void *aBlock) {
struct Block_layout *layout = (struct Block_layout *)aBlock;
// block 的 flag 有 BLOCK_HAS_SIGNATURE 和 BLOCK_USE_STRET,才会返回 TRUE
int requiredFlags = BLOCK_HAS_SIGNATURE | BLOCK_USE_STRET;
return (layout->flags & requiredFlags) == requiredFlags;
}
// Checks for a valid signature, not merely the BLOCK_HAS_SIGNATURE bit.
// 判断 block 是否有签名,不判断 BLOCK_HAS_SIGNATURE,而是通过直接取签名字符串来确定存在与否
bool _Block_has_signature(void *aBlock) {
return _Block_signature(aBlock) ? true : false;
}
// 取得 block 的签名字符串,可能是 NULL
const char * _Block_signature(void *aBlock)
{
struct Block_layout *layout = (struct Block_layout *)aBlock;
struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
// 如果没有 desc3,则一定没有签名,返回 NULL
if (!desc3) return NULL;
return desc3->signature;
}
const char * _Block_layout(void *aBlock)
{
// Don't return extended layout to callers expecting old GC layout
struct Block_layout *layout = (struct Block_layout *)aBlock;
if (layout->flags & BLOCK_HAS_EXTENDED_LAYOUT) return NULL;
struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
if (!desc3) return NULL;
return desc3->layout;
}
const char * _Block_extended_layout(void *aBlock)
{
// Don't return old GC layout to callers expecting extended layout
struct Block_layout *layout = (struct Block_layout *)aBlock;
if (! (layout->flags & BLOCK_HAS_EXTENDED_LAYOUT)) return NULL;
struct Block_descriptor_3 *desc3 = _Block_descriptor_3(layout);
if (!desc3) return NULL;
// Return empty string (all non-object bytes) instead of NULL
// so callers can distinguish "empty layout" from "no layout".
if (!desc3->layout) return "";
else return desc3->layout;
}
Block拷贝,捕获参数
block 可以引用 4 种不同的类型的对象,当 block 被拷贝到堆上时,需要 help,即帮助拷贝一些东西。
1)基于 C++ 栈的对象
2)Objective-C 对象
3)其他 Block
4)被 __block 修饰的变量
block 的 helper 函数是编译器合成的(比如编译器写的 __main_block_copy_1() 函数),它们被用在 _Block_copy() 函数和 _Block_release() 函数中。copy helper 对基于 C++ 栈的对象调用调用 C++ 常拷贝构造函数,对其他三种对象调用 _Block_object_assign 函数。 dispose helper 对基于 C++ 栈的对象调用析构函数,对其他的三种调用 _Block_object_dispose 函数。
_Block_object_assign 和 _Block_object_dispose 函数的第三个参数 flags 有可能是:
1)BLOCK_FIELD_IS_OBJECT(3) 表示是一个对象
2)BLOCK_FIELD_IS_BLOCK(7) 表示是一个 block
3)BLOCK_FIELD_IS_BYREF(8) 表示是一个 byref,一个被 __block 修饰的变量;如果 __block 变量还被 __weak 修饰,则还会加上 BLOCK_FIELD_IS_WEAK(16)
所以 block 的 copy/dispose helper 只会传入四种值:3,7,8,24
上述的4种类型的对象都会由编译器合成 copy/dispose helper 函数,和 block 的 helper 函数类似,byref 的 copy helper 将会调用 C++ 的拷贝构造函数(不是常拷贝构造),dispose helper 则会调用析构函数。还一样的是,helpers 将会一样调用进两个支持函数中,对于对象和 block,参数值是一样的,都另外附带上 BLOCK_BYREF_CALLER (128) bit 的信息。
所以 __block copy/dispose helper 函数生成 flag 的值为:对象是 3,block 是 7,带 __weak 的是 16,并且一直有 128,有下面这么几种组合:
__block id 128+3 (0x83)
__block (^Block) 128+7 (0x87)
__weak __block id 128+3+16 (0x93)
__weak __block (^Block) 128+7+16 (0x97)
// 当 block 和 byref 要持有对象时,它们的 copy helper 函数会调用这个函数来完成 assignment,
// 参数 destAddr 其实是一个二级指针,指向真正的目标指针
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
// 默认什么都不干,但在 _Block_use_RR() 中会被 Objc runtime 或者 CoreFoundation 设置 retain 函数,
// 其中,可能会与 runtime 建立联系,操作对象的引用计数什么的
_Block_retain_object(object);
// 使 dest 指向的目标指针指向 object
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
// 使 dest 指向的拷贝到堆上object
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
// 使 dest 指向的拷贝到堆上的byref
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
// 使 dest 指向的目标指针指向 object
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
// 使 dest 指向的目标指针指向 object
*dest = object;
break;
default:
break;
}
}
// When Blocks or Block_byrefs hold objects their destroy helper routines call this entry point
// to help dispose of the contents
// 当 block 和 byref 要 dispose 对象时,它们的 dispose helper 会调用这个函数
void _Block_object_dispose(const void *object, const int flags) {
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
// 如果是 byref
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
// get rid of the __block data structure held in a Block
// 对 byref 对象做 release 操作
_Block_byref_release(object);
break;
// 如果是 block
case BLOCK_FIELD_IS_BLOCK:
// 对 block 做 release 操作
_Block_release(object);
break;
// 如果是对象
case BLOCK_FIELD_IS_OBJECT:
// 默认啥也不干,但在 _Block_use_RR() 中可能会被 Objc runtime 或者 CoreFoundation 设置一个 release 函数,里面可能会涉及到 runtime 的引用计数
_Block_release_object(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
break;
default:
break;
}
}