4、函数式编程

2020-08-10  本文已影响0人  Doozy

高阶函数

函数本身也可以赋值给变量,即:变量可以指向函数。
一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

def add(x, y, f):
    return f(x) + f(y)
print(add(-5, 6, abs))
11

map/reduce

map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回

函数f(x)=x^2
>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

计算任意复杂的函数,比如,把这个list所有数字转为字符串:
>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9'

reduce 把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

一个序列求和,就可以用reduce实现:
>>> from functools import reduce
>>> def add(x, y):
...     return x + y
...
>>> reduce(add, [1, 3, 5, 7, 9])
25
把序列[1, 3, 5, 7, 9]变换成整数13579,reduce就可以派上用场:
>>> from functools import reduce
>>> def fn(x, y):
...     return x * 10 + y
...
>>> reduce(fn, [1, 3, 5, 7, 9])
13579

练习:

利用map()函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字
def normalize(name):
    return name[0].upper() + name[1:].lower()
L1 = ['adam', 'LISA', 'barT']
L2 = list(map(normalize, L1))
print(L2)

prod()函数,可以接受一个list并利用reduce()求积
def prod(L):
    def f(x,y):
        return x*y
    return reduce(f,L)

filter

filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素

在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n):
    return n % 2 == 1
list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:
def not_empty(s):
    return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', '  ']))
# 结果: ['A', 'B', 'C']

filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

回数是指从左向右读和从右向左读都是一样的数,例如12321,909。请利用filter()筛选出回数:
def is_palindrome(n):
    return n == int(str(n)[::-1])

sorted

内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它可以接收一个key函数来实现自定义的排序
例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

练习
假设我们用一组tuple表示学生名字和成绩:

 = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
请用sorted()对上述列表分别按名字排序:
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
def by_name(t):
    return t[0]
L2 = sorted(L, key=by_name)
print(L2)
再按成绩从高到低排序:
def by_score(t):
    return -t[1]
L2 = sorted(L, key=by_score)
print(L2)

返回函数

函数作为返回值

def lazy_sum(*args):
    def sum():
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    return sum
当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:
>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>
调用函数f时,才真正计算求和的结果:
>>> f()
25

闭包

返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。


匿名函数

关键字lambda表示匿名函数,冒号前面的x表示函数参数。
匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。
用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数


装饰器


偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。
在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度。而偏函数也可以做到这一点。

functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。
所以,当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。

上一篇 下一篇

猜你喜欢

热点阅读