后台开发实战

【开源实战】阿里开源MySQL中间件Canal快速入门

2020-05-10  本文已影响0人  蛮三刀酱

前言

Canal用途很广,并且上手非常简单,小伙伴们在平时完成公司的需求时,很有可能会用到。

举个例子:

公司目前有多个开发人员正在开发一套服务,为了缩短调用延时,对部分接口数据加入了缓存。一旦这些数据在数据库中进行了更新操作,缓存就成了旧数据,必须及时删除。

删除缓存的代码理所当然可以写在更新数据的业务代码里,但有时候者写操作是在别的项目代码里,你可能无权修改,亦或者别人不愿你在他代码里写这种业务之外的代码。(毕竟多人协作中间会产生各种配合问题)。又或者就是单纯的删除缓存的操作失败了,缓存依然是旧数据。

正如上篇文章缓存与数据库双写一致性实战里面所说,我们可以将缓存更新操作完全独立出来,形成一套单独的系统。Canal正是这么一个很好的帮手。 能帮我们实现像下图这样的系统:

image

本篇文章的要点如下:

阿里开源MySQL中间件Canal快速入门

Canal是什么

众所周知,阿里是国内比较早地大量使用MySQL的互联网企业(去IOE化:去掉IBM的小型机、Oracle数据库、EMC存储设备,代之以自己在开源软件基础上开发的系统),并且基于阿里巴巴/淘宝的业务,从 2010 年开始,业务逐步尝试数据库日志解析获取增量变更进行同步,由此衍生出了大量的数据库增量订阅和消费业务。

Canal应运而生,它通过伪装成数据库的从库,读取主库发来的binlog,用来实现数据库增量订阅和消费业务需求

Canal用途:

开源项目地址:

https://github.com/alibaba/canal

在这里就不再摘抄项目简介了,提炼几个值得注意的点:

Canal工作原理

Canal实际是将自己伪装成数据库的从库,来读取Binlog。我们先补习下关于MySQL数据库主从数据库的基础知识,这样就能更快的理解Canal。

数据库的读写分离

为了应对高并发场景,MySQL支持把一台数据库主机分为单独的一台写主库(主要负责写操作),而把读的数据库压力分配给读的从库,而且读从库可以变为多台,这就是读写分离的典型场景。

image

数据库主从同步

实现数据库的读写分离,是通过数据库主从同步,让从数据库监听主数据库Binlog实现的。大体流程如下图:

MySQL master 将数据变更写入二进制日志( binary log, 其中记录叫做二进制日志事件binary log events,可以通过 show binlog events 进行查看)

MySQL slave 将 master 的 binary log events 拷贝到它的中继日志(relay log)

MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

image

详细主从同步原理在这里就不展开细说了。

可以看到,这种架构下会有一个问题,数据库主从同步会存在延迟,那么就会有短暂的时间,主从数据库的数据是不一致的。

这种不一致大多数情况下非常短暂,很多时候我们可以忽略他。

但一旦要求数据一致,就会引申出如何解决这个问题的思考。

数据库主从同步一致性问题

我们通常使用MySQL主从复制来解决MySQL的单点故障问题,其通过逻辑复制的方式把主库的变更同步到从库,主备之间无法保证严格一致的模式,

于是,MySQL的主从复制带来了主从“数据一致性”的问题。MySQL的复制分为:异步复制、半同步复制、全同步复制。

异步复制

MySQL默认的复制即是异步复制,主库在执行完客户端提交的事务后会立即将结果返给给客户端,并不关心从库是否已经接收并处理,这样就会有一个问题,主如果crash掉了,此时主上已经提交的事务可能并没有传到从库上,如果此时,强行将从提升为主,可能导致新主上的数据不完整。

主库将事务 Binlog 事件写入到 Binlog 文件中,此时主库只会通知一下 Dump 线程发送这些新的 Binlog,然后主库就会继续处理提交操作,而此时不会保证这些 Binlog 传到任何一个从库节点上。

全同步复制

指当主库执行完一个事务,所有的从库都执行了该事务才返回给客户端。因为需要等待所有从库执行完该事务才能返回,所以全同步复制的性能必然会收到严重的影响。

当主库提交事务之后,所有的从库节点必须收到、APPLY并且提交这些事务,然后主库线程才能继续做后续操作。但缺点是,主库完成一个事务的时间会被拉长,性能降低。

半同步复制

是介于全同步复制与全异步复制之间的一种,主库只需要等待至少一个从库节点收到并且 Flush Binlog 到 Relay Log 文件即可,主库不需要等待所有从库给主库反馈。同时,这里只是一个收到的反馈,而不是已经完全完成并且提交的反馈,如此,节省了很多时间。

介于异步复制和全同步复制之间,主库在执行完客户端提交的事务后不是立刻返回给客户端,而是等待至少一个从库接收到并写到relay log中才返回给客户端。相对于异步复制,半同步复制提高了数据的安全性,同时它也造成了一定程度的延迟,这个延迟最少是一个TCP/IP往返的时间。所以,半同步复制最好在低延时的网络中使用。

image

事实上,半同步复制并不是严格意义上的半同步复制,MySQL半同步复制架构中,主库在等待备库ack时候,如果超时会退化为异步后,也可能导致“数据不一致”。

当半同步复制发生超时时(由rpl_semi_sync_master_timeout参数控制,单位是毫秒,默认为10000,即10s),会暂时关闭半同步复制,转而使用异步复制。当master dump线程发送完一个事务的所有事件之后,如果在rpl_semi_sync_master_timeout内,收到了从库的响应,则主从又重新恢复为半同步复制。

关于半同步复制的详细原理分析可以看这篇引申文章,在此不展开:

https://www.cnblogs.com/ivictor/p/5735580.html

回到Canal的工作原理

回顾了数据库从库的数据同步原理,理解Canal十分简单,直接引用官网原文:

Canal实战

开启MySQL Binlog

这个步骤我在之前的文章教你使用Binlog日志恢复误删的MySQL数据已经提到过,这里完善了一下,再贴一下,方便大家。

首先进入数据库控制台,运行指令:

mysql> show variables like'log_bin%';
+---------------------------------+-------+
| Variable_name                   | Value |
+---------------------------------+-------+
| log_bin                         | OFF   |
| log_bin_basename                |       |
| log_bin_index                   |       |
| log_bin_trust_function_creators | OFF   |
| log_bin_use_v1_row_events       | OFF   |
+---------------------------------+-------+
5 rows in set (0.00 sec)

可以看到我们的binlog是关闭的,都是OFF。接下来我们需要修改Mysql配置文件,执行命令:

sudo vi /etc/mysql/mysql.conf.d/mysqld.cnf

在文件末尾添加:

log-bin=/var/lib/mysql/mysql-bin
binlog-format=ROW

保存文件,重启mysql服务:

sudo service mysql restart

重启完成后,查看下mysql的状态:

systemctl status mysql.service

这时,如果你的mysql版本在5.7或更高版本,就会报错:

Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.190791Z 0 [Warning] Changed limits: max_open_files: 1024 (requested 5000)
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.190839Z 0 [Warning] Changed limits: table_open_cache: 431 (requested 2000)
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.359713Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp server option (se
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.361395Z 0 [Note] /usr/sbin/mysqld (mysqld 5.7.28-0ubuntu0.16.04.2-log) starting as process 5930 ...
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.363017Z 0 [ERROR] You have enabled the binary log, but you haven't provided the mandatory server-id. Please refer to the proper server
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.363747Z 0 [ERROR] Aborting
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.363922Z 0 [Note] Binlog end
Jan 06 15:49:58 VM-0-11-ubuntu mysqld[5930]: 2020-01-06T07:49:58.364108Z 0 [Note] /usr/sbin/mysqld: Shutdown complete
Jan 06 15:49:58 VM-0-11-ubuntu systemd[1]: mysql.service: Main process exited, code=exited, status=1/FAILURE

You have enabled the binary log, but you haven't provided the mandatory server-id. Please refer to the proper server

之前我们的配置,对于5.7以下版本应该是可以的。但对于高版本,我们需要指定server-id。

我们给这个MySQL指定为2(只要不与其他库id重复):

server-id=2

创建数据库Canal使用账号

mysql> select user, host from user;
+------------------+-----------+
| user             | host      |
+------------------+-----------+
| root             | %         |
| debian-sys-maint | localhost |
| mysql.session    | localhost |
| mysql.sys        | localhost |
| root             | localhost |
+------------------+-----------+
5 rows in set
CREATE USER canal IDENTIFIED BY 'xxxx';  (填写密码)  
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';  
FLUSH PRIVILEGES;  

show grants for 'canal' 

配置Canal服务

去Github下载最近的Canal稳定版本包:

解压缩:

mkdir /tmp/canal
tar zxvf canal.deployer-$version.tar.gz  -C /tmp/canal

配置文件设置:

主要有两个文件配置,一个是conf/canal.properties一个是conf/example/instance.properties

为了快速运行Demo,只修改conf/example/instance.properties里的数据库连接账号密码即可

# username/password
canal.instance.dbUsername=canal
canal.instance.dbPassword=xxxxxxx
canal.instance.connectionCharset = UTF-8

运行Canal服务

请先确保机器上有JDK,接着运行Canal启动脚本:

sh bin/startup.sh

下图即成功运行:

image

Java客户端代码

我在秒杀系统系列文章的代码仓库里(miaosha-job)编写了如下客户端代码

仓库源码地址:https://github.com/qqxx6661/miaosha

package job;

import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry.*;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.InvalidProtocolBufferException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.net.InetSocketAddress;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

public class CanalClient {

    private static final Logger LOGGER = LoggerFactory.getLogger(CanalClient.class);

    public static void main(String[] args) {

        // 第一步:与canal进行连接
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("127.0.0.1", 11111),
                "example", "", "");
        connector.connect();

        // 第二步:开启订阅
        connector.subscribe();

        // 第三步:循环订阅
        while (true) {
            try {
                // 每次读取 1000 条
                Message message = connector.getWithoutAck(1000);

                long batchID = message.getId();

                int size = message.getEntries().size();

                if (batchID == -1 || size == 0) {
                    LOGGER.info("当前暂时没有数据,休眠1秒");
                    Thread.sleep(1000);
                } else {
                    LOGGER.info("-------------------------- 有数据啦 -----------------------");
                    printEntry(message.getEntries());
                }

                connector.ack(batchID);

            } catch (Exception e) {
                LOGGER.error("处理出错");
            } finally {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    /**
     * 获取每条打印的记录
     */
    public static void printEntry(List<Entry> entrys) {

        for (Entry entry : entrys) {

            // 第一步:拆解entry 实体
            Header header = entry.getHeader();
            EntryType entryType = entry.getEntryType();

            // 第二步: 如果当前是RowData,那就是我需要的数据
            if (entryType == EntryType.ROWDATA) {

                String tableName = header.getTableName();
                String schemaName = header.getSchemaName();

                RowChange rowChange = null;

                try {
                    rowChange = RowChange.parseFrom(entry.getStoreValue());
                } catch (InvalidProtocolBufferException e) {
                    e.printStackTrace();
                }

                EventType eventType = rowChange.getEventType();

                LOGGER.info(String.format("当前正在操作表 %s.%s, 执行操作= %s", schemaName, tableName, eventType));

                // 如果是‘查询’ 或者 是 ‘DDL’ 操作,那么sql直接打出来
                if (eventType == EventType.QUERY || rowChange.getIsDdl()) {
                    LOGGER.info("执行了查询语句:[{}]", rowChange.getSql());
                    return;
                }

                // 第三步:追踪到 columns 级别
                rowChange.getRowDatasList().forEach((rowData) -> {

                    // 获取更新之前的column情况
                    List<Column> beforeColumns = rowData.getBeforeColumnsList();

                    // 获取更新之后的 column 情况
                    List<Column> afterColumns = rowData.getAfterColumnsList();

                    // 当前执行的是 删除操作
                    if (eventType == EventType.DELETE) {
                        printColumn(beforeColumns);
                    }

                    // 当前执行的是 插入操作
                    if (eventType == EventType.INSERT) {
                        printColumn(afterColumns);
                    }

                    // 当前执行的是 更新操作
                    if (eventType == EventType.UPDATE) {
                        printColumn(afterColumns);
                        // 进行删除缓存操作
                        deleteCache(afterColumns, tableName, schemaName);
                    }


                });
            }
        }
    }

    /**
     * 每个row上面的每一个column 的更改情况
     * @param columns
     */
    public static void printColumn(List<Column> columns) {

        columns.forEach((column) -> {
            String columnName = column.getName();
            String columnValue = column.getValue();
            String columnType = column.getMysqlType();
            // 判断 该字段是否更新
            boolean isUpdated = column.getUpdated();
            LOGGER.info(String.format("数据列:columnName=%s, columnValue=%s, columnType=%s, isUpdated=%s", columnName, columnValue, columnType, isUpdated));
        });
    }

    /**
     * 秒杀下单接口删除库存缓存
     */
    public static void deleteCache(List<Column> columns, String tableName, String schemaName) {
        if ("stock".equals(tableName) && "m4a_miaosha".equals(schemaName)) {
            AtomicInteger id = new AtomicInteger();
            columns.forEach((column) -> {
                String columnName = column.getName();
                String columnValue = column.getValue();
                if ("id".equals(columnName)) {
                    id.set(Integer.parseInt(columnValue));
                }
            });
            // TODO: 删除缓存
            LOGGER.info("Canal删除stock表id:[{}] 的库存缓存", id);

        }
    }
}

代码中有详细的注释,就不做解释了。

我们跑起代码,紧接着我们在数据库中进行更改UPDATE操作,把法外狂徒张三改成张三1,然后再改回张三,见下图。

image

Canal成功收到了两条更新操作:

image

紧接着我们模拟一个删除Cache缓存的业务,在代码中有:

/**
 * 秒杀下单接口删除库存缓存
 */
public static void deleteCache(List<Column> columns, String tableName, String schemaName) {
    if ("stock".equals(tableName) && "m4a_miaosha".equals(schemaName)) {
        AtomicInteger id = new AtomicInteger();
        columns.forEach((column) -> {
            String columnName = column.getName();
            String columnValue = column.getValue();
            if ("id".equals(columnName)) {
                id.set(Integer.parseInt(columnValue));
            }
        });
        // TODO: 删除缓存
        LOGGER.info("Canal删除stock表id:[{}] 的库存缓存", id);

    }
}

在上面的代码中,在收到m4a_miaosha.stock表的更新操作后,我们刷新库存缓存。效果如下:

image image

简单的Canal使用就介绍到这里,剩下的发挥空间留给各位读者大大们。

总结

本文总结了Canal的基本原理和简单的使用。

总结如下几点:

参考

上一篇下一篇

猜你喜欢

热点阅读