经典动态规划:0-1 背包问题

2020-11-06  本文已影响0人  labuladong

-----------

后台天天有人问背包问题,这个问题其实不难啊,如果我们号动态规划系列的十几篇文章你都看过,借助框架,遇到背包问题可以说是手到擒来好吧。无非就是状态 + 选择,也没啥特别之处嘛。

今天就来说一下背包问题吧,就讨论最常说的 0-1 背包问题。描述:

给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?

image

举个简单的例子,输入如下:

N = 3, W = 4
wt = [2, 1, 3]
val = [4, 2, 3]

算法返回 6,选择前两件物品装进背包,总重量 3 小于 W,可以获得最大价值 6。

题目就是这么简单,一个典型的动态规划问题。这个题目中的物品不可以分割,要么装进包里,要么不装,不能说切成两块装一半。这就是 0-1 背包这个名词的来历。

解决这个问题没有什么排序之类巧妙的方法,只能穷举所有可能,根据我们「动态规划详解」中的套路,直接走流程就行了。

动规标准套路

看来我得每篇动态规划文章都得重复一遍套路,历史文章中的动态规划问题都是按照下面的套路来的。

第一步要明确两点,「状态」和「选择」

先说状态,如何才能描述一个问题局面?只要给几个物品和一个背包的容量限制,就形成了一个背包问题呀。所以状态有两个,就是「背包的容量」和「可选择的物品」

再说选择,也很容易想到啊,对于每件物品,你能选择什么?选择就是「装进背包」或者「不装进背包」嘛

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)

PS:此框架出自历史文章 团灭 LeetCode 股票问题

第二步要明确 dp 数组的定义

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维 dp 数组。

dp[i][w] 的定义如下:对于前 i 个物品,当前背包的容量为 w,这种情况下可以装的最大价值是 dp[i][w]

比如说,如果 dp[3][5] = 6,其含义为:对于给定的一系列物品中,若只对前 3 个物品进行选择,当背包容量为 5 时,最多可以装下的价值为 6。

PS:为什么要这么定义?便于状态转移,或者说这就是套路,记下来就行了。建议看一下我们的动态规划系列文章,几种套路都被扒得清清楚楚了。

根据这个定义,我们想求的最终答案就是 dp[N][W]。base case 就是 dp[0][..] = dp[..][0] = 0,因为没有物品或者背包没有空间的时候,能装的最大价值就是 0。

细化上面的框架:

int dp[N+1][W+1]
dp[0][..] = 0
dp[..][0] = 0

for i in [1..N]:
    for w in [1..W]:
        dp[i][w] = max(
            把物品 i 装进背包,
            不把物品 i 装进背包
        )
return dp[N][W]

PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

第三步,根据「选择」,思考状态转移的逻辑

简单说就是,上面伪码中「把物品 i 装进背包」和「不把物品 i 装进背包」怎么用代码体现出来呢?

这就要结合对 dp 数组的定义和我们的算法逻辑来分析了:

先重申一下刚才我们的 dp 数组的定义:

dp[i][w] 表示:对于前 i 个物品,当前背包的容量为 w 时,这种情况下可以装下的最大价值是 dp[i][w]

如果你没有把这第 i 个物品装入背包,那么很显然,最大价值 dp[i][w] 应该等于 dp[i-1][w],继承之前的结果。

如果你把这第 i 个物品装入了背包,那么 dp[i][w] 应该等于 dp[i-1][w - wt[i-1]] + val[i-1]

首先,由于 i 是从 1 开始的,所以 valwt 的索引是 i-1 时表示第 i 个物品的价值和重量。

dp[i-1][w - wt[i-1]] 也很好理解:你如果装了第 i 个物品,就要寻求剩余重量 w - wt[i-1] 限制下的最大价值,加上第 i 个物品的价值 val[i-1]

综上就是两种选择,我们都已经分析完毕,也就是写出来了状态转移方程,可以进一步细化代码:

for i in [1..N]:
    for w in [1..W]:
        dp[i][w] = max(
            dp[i-1][w],
            dp[i-1][w - wt[i-1]] + val[i-1]
        )
return dp[N][W]

最后一步,把伪码翻译成代码,处理一些边界情况

我用 C++ 写的代码,把上面的思路完全翻译了一遍,并且处理了 w - wt[i-1] 可能小于 0 导致数组索引越界的问题:

int knapsack(int W, int N, vector<int>& wt, vector<int>& val) {
    // base case 已初始化
    vector<vector<int>> dp(N + 1, vector<int>(W + 1, 0));
    for (int i = 1; i <= N; i++) {
        for (int w = 1; w <= W; w++) {
            if (w - wt[i-1] < 0) {
                // 这种情况下只能选择不装入背包
                dp[i][w] = dp[i - 1][w];
            } else {
                // 装入或者不装入背包,择优
                dp[i][w] = max(dp[i - 1][w - wt[i-1]] + val[i-1], 
                               dp[i - 1][w]);
            }
        }
    }
    
    return dp[N][W];
}

至此,背包问题就解决了,相比而言,我觉得这是比较简单的动态规划问题,因为状态转移的推导比较自然,基本上你明确了 dp 数组的定义,就可以理所当然地确定状态转移了。

_____________

我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

上一篇 下一篇

猜你喜欢

热点阅读