TCGA文章复现——LncRNA-CRC预后
Title:An Integrated Three-Long Non-coding RNA Signature Predicts Prognosis in Colorectal Cancer Patients
文章思路本文的内容是用GDC下载并整理表达矩阵和临床信息数据。
1.从网页选择数据,下载manifest文件
数据存放网站:https://portal.gdc.cancer.gov/
在Repository勾选自己需要的case和file类型。以CHOL为例:
case-Project选择TCGA-CHOL。
file-选择如图:
左右分别是mrna 和clinical的样本选择截图。选好后,点击右侧manifest键下载对应的清单文件。
2.使用gdc-client工具下载
注意:
将gdc-client(mac)或gdc-client.exe(windows)放在工作目录下;
将manifest文件放在工作目录下。
options(stringsAsFactors = F)
cancer_type="TCGA-COAD"
if(!dir.exists("clinical"))dir.create("clinical")
if(!dir.exists("mrna"))dir.create("mrna")
dir()
#下面两行命令在terminal完成
#./gdc-client download -m gdc_manifest.clinical.txt -d clinical
#./gdc-client download -m gdc_manifest.COAD_RNAseq.txt -d mrna
length(dir("./clinical/")) #结果是459.说明有459个病人
length(dir("./mrna/")) #结果是521,说明有521个样本
可以看到,下载的文件是按样本存放的,我们需要得到的是表格,需要将他们批量读入R语言并整理。
3.整理临床信息
library(XML)
result <- xmlParse("./clinical/007b27c5-d36e-4bec-9321-b03b773fd3b8/nationwidechildrens.org_clinical.TCGA-A6-6651.xml")
rootnode <- xmlRoot(result)
rootsize <- xmlSize(rootnode)
print(rootnode[1])
#print(rootnode[2])
xmldataframe <- xmlToDataFrame(rootnode[2])
head(t(xmlToDataFrame(rootnode[2])))
xmls = dir("clinical/",pattern = "*.xml$",recursive = T)
td = function(x){
result <- xmlParse(file.path("clinical/",x))
rootnode <- xmlRoot(result)
xmldataframe <- xmlToDataFrame(rootnode[2])
return(t(xmldataframe))
}
cl = lapply(xmls,td)
cl_df <- t(do.call(cbind,cl))
cl_df[1:3,1:3]
clinical = data.frame(cl_df)
clinical[1:4,1:4]
4.整理表达矩阵
探索数据:先任选两个counts文件读取,并观察geneid的顺序是否一致。
options(stringsAsFactors = F)
x = read.table("mrna/02734d4d-fc8f-4ef7-ac82-1b4d7184cc5e/28004569-048d-4f8c-99aa-7a8c69a98dcc.htseq.counts.gz")
x2 = read.table("mrna/0826add5-571b-41be-b186-936959fc9d79/dfeb2d54-28da-4521-b488-bdac246bb59b.htseq.counts.gz")
identical(x$V1,x2$V1)
由此可知,他们的geneid顺序是一致的,可以直接cbind,不会导致顺序错乱。
批量读取所有的counts.gz文件。
count_files = dir("mrna/",pattern = "*.htseq.counts.gz$",recursive = T)
ex = function(x){
result <- read.table(file.path("mrna/",x),row.names = 1,sep = "\t")
return(result)
}
head(ex("02734d4d-fc8f-4ef7-ac82-1b4d7184cc5e/28004569-048d-4f8c-99aa-7a8c69a98dcc.htseq.counts.gz"))
exp = lapply(count_files,ex)
exp <- do.call(cbind,exp)
dim(exp) #60488 521 有6万多行,521个样本
exp[1:4,1:4]
发现问题:没有列名
发现问题:这样产生出来的表达矩阵没有列名。
解决办法:找到一个文件名与样本ID一一对应的文件。cart-json文件。
meta <- jsonlite::fromJSON("metadata.cart.2020-04-23.json")
colnames(meta)
ids <- meta$associated_entities;class(ids)
ids[[1]]
class(ids[[1]][,3]) #并不是每一个数据都是第3列,需要自己手动检查
#不过也可以用str_detect(ids[[1]],"TCGA") 返回值为TRUE就是我们要的列
可以看到,meta$associated_entities是个列表,这个列表里包含数据框,数据框的第一列内容就是tcga样本id。
注意,换了数据需要自己探索存放在哪一列。不一定是完全一样的,需要确认清楚。
ID = sapply(ids,function(x){x[,3]})
file2id = data.frame(file_name = meta$file_name,
ID = ID)
文件名与TCGA样本ID的对应关系已经得到,接下来是将其添加到表达矩阵中,成为行名。需要找到读取文件的顺序,一一对应修改。
head(file2id$file_name)
head(count_files)
count_files2 = stringr::str_split(count_files,"/",simplify = T)[,2]
count_files2[1] %in% file2id$file_name
count_files2的顺序就是列名的顺序,根据它来调整file2id的顺序。此处需要再次理解一下match函数。
file2id = file2id[match(count_files2,file2id$file_name),]
colnames(exp) = file2id$ID
exp[1:4,1:4]
表达矩阵整理完成,需要过滤一下那些在很多样本里表达量都为0的基因。过滤标准不唯一。
dim(exp)
exp = exp[apply(exp, 1, function(x) sum(x > 1) > 41), ]
dim(exp)
exp[1:4,1:4]
分组信息
根据样本ID的第14-15位,给样本分组(tumor和normal)
table(stringr::str_sub(colnames(exp),14,15))
group_list = ifelse(as.numeric(substr(colnames(exp),14,15)) < 10,'tumor','normal')
group_list = factor(group_list,levels = c("normal","tumor"))
table(group_list) #normal:41 tumor:480
save(exp,clinical,group_list,cancer_type,file = paste0(cancer_type,"gdc.Rdata"))
接下来就是差异分析,但是差异分析之前要先把lncRNA挑出来,然后还有配对样本挑出来,是非常难的两步!!(小洁老师说的)
01.需求:文中作者把配对数据以及LncRNA都挑出来了
TCGA的RNA-seq数据使用的geneid是ensembl id,里面不仅有mRNA,也有非编码基因和其他类型。
所以,如何从TCGA得到的表达矩阵中分别提取出mRNA和lncRNA的表达量呢?
02.思路
1.找到TCGA数据对应的参考基因组版本。
2.下载该版本的参考基因组文件,找到mRNA和lncRNA对应的ensembl id
3.在表达矩阵中筛选。
03.动起来
1.找参考基因组版本
gdc首页的support
about the data - GDC Reference Files
可以看到,使用的参考基因组版本是genecode的v22。(版本很多,这个是14年的版本了)
2.找区分类型的列
在gtf文件里并不是直接分出了lncRNA,需要找gtf文件里对biotype的说明,不看不知道,一看发现这是一个很长的表格。
其中对lncRNA的说明是:
Generic long non-coding RNA biotype that replaced the following biotypes: 3prime_overlapping_ncRNA, antisense, bidirectional_promoter_lncRNA, lincRNA, macro_lncRNA, non_coding, processed_transcript, sense_intronic and sense_overlapping.
所以需要将genetype里这些类型对应的行挑出来,就是lncRNA了。
然后与表达矩阵行名进行匹配替换,就可以分别得到mRNA和lncRNA的矩阵了。
全部样本的表达矩阵,供生存分析用
#step1:读取并探索gtf文件----
options(stringsAsFactors = F)
if(!file.exists("anno.Rdata")){
#BiocManager::install("rtracklayer")
library(rtracklayer)
x = rtracklayer::import("gencode.v22.annotation.gtf")
class(x)
x2 = as.data.frame(x);dim(x2)
colnames(x2)
tj = as.data.frame(table(x2$type));tj
tj2 = as.data.frame(table(x2$gene_type));tj2
#step2:先筛选出gene对应的行
nrow(x2);x2 = x2[x2$type=="gene",];nrow(x2)
tj3 = as.data.frame(table(x2$gene_type));tj3
#step3:提取lnc和mRNA及其对应的ensambelid和symbol
lnc_bype = c("3prime_overlapping_ncRNA", "antisense", "bidirectional_promoter_lncRNA", "lincRNA", "macro_lncRNA", "non_coding", "processed_transcript", "sense_intronic" , "sense_overlapping")
table(x2$gene_type %in% lnc_bype)
table(x2$gene_type == "protein_coding")
lnc_anno = x2[x2$gene_type %in% lnc_bype,c("gene_name","gene_id","gene_type")]
mRNA_anno = x2[x2$gene_type == "protein_coding",c("gene_name","gene_id","gene_type")]
save(lnc_anno,mRNA_anno,file = "anno.Rdata")
}
load("anno.Rdata")
#step4:表达矩阵拆分和注释
load("TCGA-COADgdc.Rdata")
table(rownames(exp) %in% mRNA_anno$gene_id)
mRNA_exp = exp[rownames(exp) %in% mRNA_anno$gene_id,]
tmp = data.frame(gene_id = rownames(exp))
x = dplyr::inner_join(tmp,mRNA_anno,by = "gene_id")
#inner_join不改变顺序,可以确认一下
identical(tmp$gene_id,rownames(exp))
table(!duplicated(x$gene_name))
mRNA_exp = mRNA_exp[!duplicated(x$gene_name),]
x = x[!duplicated(x$gene_name),]
rownames(mRNA_exp) = x$gene_name
mRNA_exp[1:4,1:4] #这里的mRNA是所有样本521个样本的mRNA
mRNA_exp = na.omit(mRNA_exp)
#同样办法拆出lncRNA:也是所有样本的(521个样本)
lnc_exp = exp[rownames(exp) %in% lnc_anno$gene_id,]
tmp = data.frame(gene_id = rownames(exp))
x = dplyr::inner_join(tmp,lnc_anno,by = "gene_id")
identical(tmp$gene_id,rownames(exp))
table(!duplicated(x$gene_name))
lnc_exp = lnc_exp[!duplicated(x$gene_name),]
x = x[!duplicated(x$gene_name),]
rownames(lnc_exp) = x$gene_name
lnc_exp[1:4,1:4]
lnc_exp = na.omit(lnc_exp)
配对样本的lnc、mRNA 表达矩阵,供差异分析用
挑选样本,是选列,与行(基因)无关
1.选出与normal样本匹配的tumor样本,合并为新的表达矩阵
#挑选出来normal的,然后匹配样本名
exp2 = rbind(mRNA_exp,lnc_exp) #mRNA和lncRNA合并,不改变顺序
identical(rownames(mRNA_exp),head(rownames(exp2),nrow(mRNA_exp)))
table(stringr::str_sub(colnames(exp2),14,15)) #正常样本个数?41个大于10的那就是41个正常样本
library(stringr)
exp2_nor = exp2[,str_sub(colnames(exp2),14,15)==11]
exp2_tum = exp2[,str_sub(colnames(exp2),14,15)!=11]
patient = str_sub(colnames(exp2_nor),1,12) #有配对样本的病人id
table(str_sub(colnames(exp2_tum),1,12) %in% str_sub(patient))
# 看看肿瘤样本有重复吗:
exp2_tum = exp2_tum[,str_sub(colnames(exp2_tum),1,12) %in% str_sub(patient)]
exp2_tum = exp2_tum[,str_sort(colnames(exp2_tum))] #str_sort是排序
exp2_tum = exp2_tum[,!duplicated(str_sub(colnames(exp2_tum),1,12) )] #排序去重,这样样本有01A和01B可选时,就会留下01A。
#让正常样本顺序与肿瘤样本顺序一致,这样才方便写配对向量
tmp = match(str_sub(colnames(exp2_tum),1,12),str_sub(colnames(exp2_nor),1,12))
exp2_nor = exp2_nor[,tmp]
identical(str_sub(colnames(exp2_tum),1,12),str_sub(colnames(exp2_nor),1,12))
exp2_small = cbind(exp2_nor,exp2_tum)
拆分回lnc和mRNA
mRNA_exp_small = head(exp2_small,nrow(mRNA_exp))
lnc_exp_small = tail(exp2_small,nrow(lnc_exp))
得到了几个表达矩阵,捋一下:6个矩阵
dim(exp) #原始ensambel矩阵 35267 521
dim(exp2) #lncRNA和mRNA矩阵合并得到的symbol矩阵 26682 521
dim(lnc_exp) #lncRNA 8714 521
dim(mRNA_exp) #mRNA 17968 521
dim(lnc_exp_small) #配对的lncRNA矩阵 8714 82
dim(mRNA_exp_small)#配对的lncRNA矩阵 17968 82
save(lnc_exp,mRNA_exp,file = paste0(cancer_type,"lmexp.Rdata"))
save(lnc_exp_small,mRNA_exp_small,file = paste0(cancer_type,"lmexp_small.Rdata"))
然后就是差异分析了:
if(!require(stringr))install.packages('stringr')
if(!require(ggplotify))install.packages("ggplotify")
if(!require(patchwork))install.packages("patchwork")
if(!require(cowplot))install.packages("cowplot")
if(!require(edgeR))BiocManager::install('edgeR')
1.lnc_RNA-edgeR 配对差异分析
rm(list = ls())
load("TCGA-COADgdc.Rdata")
load("TCGA-COADlmexp_small.Rdata")
group_list = rep(c("normal","tumor"),each = ncol(lnc_exp_small)/2)
pairinfo = rep(1:(ncol(lnc_exp_small)/2),times = 2)
table(group_list)
library(edgeR)
dge <- DGEList(counts=lnc_exp_small,group=group_list)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge)
design <- model.matrix(~pairinfo+group_list)
dge <- estimateDisp(dge,design)
fit <- glmQLFit(dge, design)
fit2 <- glmQLFTest(fit)
result = topTags(fit2)
DEG=topTags(fit2, n=nrow(exp))
DEG=as.data.frame(DEG)
#logFC_cutoff <- with(DEG,mean(abs(logFC)) + 2*sd(abs(logFC)) )
logFC_cutoff <- 1.5
DEG$change = as.factor(
ifelse(DEG$PValue < 0.05 & abs(DEG$logFC) > logFC_cutoff,
ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
)
head(DEG)
table(DEG$change)
lncRNA_DEG <- DEG
cg = rownames(DEG)[DEG$change!="NOT"]
cgexp = lnc_exp_small[cg,]
table(head(DEG[cg,"change"],580))
if(!require(tinyplanet))devtools::install_local("tinyplanet-master.zip",upgrade = F)
library(ggplot2)
library(tinyplanet)
lnc_exp_small[1:4,1:4]
#PCA
dat = log(lnc_exp_small+1)
pca.plot = draw_pca(dat,group_list);pca.plot
#热图火山图
x = lnc_exp_small[cg,]
library(tinyplanet)
h = draw_heatmap(x,group_list,scale_before = T)
v = draw_volcano(lncRNA_DEG,logFC_cutoff = 1.5,pkg = 2)
save(cg,file = paste0(cancer_type,"lnccg.Rdata"))
2.mRNA-edgeR 配对差异分析 可以搜索edgeR paired 网上有代码写配对怎么分析
rm(list = ls())
load("TCGA-COADgdc.Rdata")
load("TCGA-COADlmexp_small.Rdata")
group_list = rep(c("normal","tumor"),each = ncol(mRNA_exp_small)/2)
pairinfo = rep(1:41,times = 2)
table(group_list)
library(edgeR)
dge <- DGEList(counts=mRNA_exp_small,group=group_list)
dge$samples$lib.size <- colSums(dge$counts)
dge <- calcNormFactors(dge)
design <- model.matrix(~pairinfo+group_list)
dge <- estimateDisp(dge,design)
fit <- glmQLFit(dge, design)
fit2 <- glmQLFTest(fit)
result = topTags(fit2)
DEG=topTags(fit2, n=nrow(exp))
DEG=as.data.frame(DEG)
#logFC_cutoff <- with(DEG,mean(abs(logFC)) + 2*sd(abs(logFC)) )
logFC_cutoff <- 1.5
DEG$change = as.factor(
ifelse(DEG$PValue < 0.05 & abs(DEG$logFC) > logFC_cutoff,
ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
)
head(DEG)
table(DEG$change)
lncRNA_DEG <- DEG
cg = rownames(DEG)[DEG$change!="NOT"]
cgexp = mRNA_exp_small[cg,]
table(head(DEG[cg,"change"],580))
if(!require(tinyplanet))devtools::install_local("tinyplanet-master.zip",upgrade = F)
library(ggplot2)
library(tinyplanet)
mRNA_exp_small[1:4,1:4]
#PCA
dat = log(mRNA_exp_small+1)
pca.plot = draw_pca(dat,group_list);pca.plot
#热图火山图
x = mRNA_exp_small[cg,]
library(tinyplanet)
h = draw_heatmap(x,group_list,scale_before = T)
v = draw_volcano(lncRNA_DEG,logFC_cutoff = 1.5,pkg = 2)
save(cg,file = paste0(cancer_type,"mRNAcg.Rdata"))
以上代码出的图在下面:
LncRNA PCA
LncRNA 热图
mRNA PCA
mRNA 热图
下面是生存分析:
生存分析只需要tumor数据,不要normal,将其去掉,新表达矩阵数据命名为exprSet;
clinical信息需要进一步整理,成为生存分析需要的格式,新临床信息数据命名为meta。
由于不同癌症的临床信息表格组织形式不同,这里的代码需要根据实际情况修改。
rm(list=ls())
options(stringsAsFactors = F)
load("TCGA-COADgdc.Rdata")
load("TCGA-COADlmexp.Rdata")
load("TCGA-COADlnccg.Rdata")
library(stringr)
#clinical通常有几十列,选出其中有用的几列。
tmp = data.frame(colnames(clinical))
clinical = clinical[,c(
'bcr_patient_barcode',
'vital_status',
'days_to_death',
'days_to_last_followup',
'race_list',
'age_at_initial_pathologic_diagnosis',
'gender' ,
'stage_event'
)]
#其实days_to_last_followup应该是找age_at_initial_pathologic_diagnosis,这表格里没有,用days_to_birth计算一下年龄,暂且替代。
dim(clinical)
#rownames(clinical) <- NULL
rownames(clinical) <- clinical$bcr_patient_barcode
clinical[1:4,1:4]
meta = clinical[clinical$days_to_death != 0,]
#简化meta的列名
colnames(meta)=c('ID','event','death','last_followup','race','age','gender','stage')
#表达矩阵处理
exprSet=lnc_exp[cg,group_list=='tumor']
table(str_sub(colnames(exprSet),1,12) %in% meta$ID)
exprSet = exprSet[,str_sub(colnames(exprSet),1,12) %in% meta$ID]
exprSet = exprSet[,str_sort(colnames(exprSet))]
exprSet = exprSet[,!duplicated(str_sub(colnames(exprSet),1,12) )]
#调整meta的ID顺序与exprSet列名一致
meta=meta[match(str_sub(colnames(exprSet),1,12),meta$ID),]
all(meta$ID==str_sub(colnames(exprSet),1,12))
#整理生存分析的输入数据----
#1.1由随访时间和死亡时间计算生存时间(月)
is.empty.chr = function(x){
ifelse(stringr::str_length(x)==0,T,F)
}
is.empty.chr(meta[2,3])
meta[,3][is.empty.chr(meta[,3])]=0
meta[,4][is.empty.chr(meta[,4])]=0
meta$time=(as.numeric(meta[,3])+as.numeric(meta[,4]))/30
#1.2 根据生死定义event,活着是0,死的是1
meta$event=ifelse(meta$event=='Alive',0,1)
#1.3 年龄和年龄分组
meta$age=as.integer(meta$age)
meta$age_group=ifelse(meta$age>median(meta$age),'older','younger')
#1.4 stage
library(stringr)
meta$stage
tmp = str_split(meta$stage,' ',simplify = T)[,2]
str_count(tmp,"T")
str_locate(tmp,"T")[,1]
tmp = str_sub(tmp,1,str_locate(tmp,"T")[,1]-1)
table(tmp)
table(is.na(tmp))
meta$stage = tmp
#1.5 race
table(meta$race)
save(meta,exprSet,group_list,cancer_type,file = paste0(cancer_type,"sur_model.Rdata"))
整理好的生存数据
下面就是生存分析的可视化:logrank批量生存分析和cox批量生存分析
1.logrank批量生存分析
logrankfile = paste0(cancer_type,"log_rank_p.Rdata")
if(!file.exists(logrankfile)){
mySurv=with(meta,Surv(time, event))
log_rank_p <- apply(exprSet , 1 , function(gene){
# gene=exprSet[1,]
meta$group=ifelse(gene>median(gene),'high','low')
data.survdiff=survdiff(mySurv~group,data=meta)
p.val = 1 - pchisq(data.survdiff$chisq, length(data.survdiff$n) - 1)
return(p.val)
})
log_rank_p=sort(log_rank_p)
save(log_rank_p,file = logrankfile)
}
load(logrankfile)
table(log_rank_p<0.01)
table(log_rank_p<0.05)
2.cox批量生存分析
coxfile = paste0(cancer_type,"cox.Rdata")
if(!file.exists(coxfile)){
mySurv=with(meta,Surv(time, event))
cox_results <-apply(exprSet , 1 , function(gene){
# gene= exprSet[1,]
group=ifelse(gene>median(gene),'high','low')
survival_dat <- data.frame(group=group,stage=meta$stage,age=meta$age,
gender=meta$gender,
stringsAsFactors = F)
m=coxph(mySurv ~ gender + age + stage + group, data = survival_dat)
beta <- coef(m)
se <- sqrt(diag(vcov(m)))
HR <- exp(beta)
HRse <- HR * se
#summary(m)
tmp <- round(cbind(coef = beta, se = se, z = beta/se, p = 1 - pchisq((beta/se)^2, 1),
HR = HR, HRse = HRse,
HRz = (HR - 1) / HRse, HRp = 1 - pchisq(((HR - 1)/HRse)^2, 1),
HRCILL = exp(beta - qnorm(.975, 0, 1) * se),
HRCIUL = exp(beta + qnorm(.975, 0, 1) * se)), 3)
return(tmp['grouplow',])
})
cox_results=t(cox_results)
save(cox_results,file = coxfile)
}
load(coxfile)
table(cox_results[,4]<0.01)
table(cox_results[,4]<0.05)
lr = names(log_rank_p)[log_rank_p<0.05]
cox = rownames(cox_results)[cox_results[,4]<0.05]
length(intersect(lr,cox))
save(cox,lr,file = paste0(cancer_type,"cox_lr.Rdata"))
然后是Lasso回归
1.准备输入数据
load("TCGA-COADsur_model.Rdata")
#load("TCGA-CHOLsur_model.Rdata")
load("TCGA-COADcox_lr.Rdata")
exprSet = exprSet[cox,]
2.构建lasso回归模型
输入数据是表达矩阵(仅含tumor样本)和对应的生死。
x=t(log2(exprSet+1))
y=meta$event
library(glmnet)
model_lasso <- glmnet(x, y,nlambda=10, alpha=1)
print(model_lasso)
这里是举例子,所以只计算了10个λ值,解释一下输出结果三列的意思。
- Df 是自由度
- 列%Dev代表了由模型解释的残差的比例,对于线性模型来说就是模型拟合的R^2(R-squred)。它在0和1之间,越接近1说明模型的表现越好,如果是0,说明模型的预测结果还不如直接把因变量的均值作为预测值来的有效。
- Lambda 是构建模型的重要参数。
解释的残差百分比越高越好,但是构建模型使用的基因的数量也不能太多,需要取一个折中值。
2.1挑选合适的λ值
计算1000个,画图,筛选表现最好的λ值
set.seed(13098)
cv_fit <- cv.glmnet(x=x, y=y, nlambda = 1000,alpha = 1)
plot(cv_fit)
两条虚线分别指示了两个特殊的λ值,一个是lambda.min,一个是lambda.1se,这两个值之间的lambda都认为是合适的。lambda.1se构建的模型最简单,即使用的基因数量少,而lambda.min则准确率更高一点,使用的基因数量更多一点。
2.2 用这两个λ值重新建模
model_lasso_min <- glmnet(x=x, y=y, alpha = 1, lambda=cv_fit$lambda.min)
model_lasso_1se <- glmnet(x=x, y=y, alpha = 1, lambda=cv_fit$lambda.1se)
这两个值体现在参数lambda上。有了模型,可以将筛选的基因挑出来了。所有基因存放于模型的子集beta中,用到的基因有一个s0值,没用的基因只记录了“.”,所以可以用下面代码挑出用到的基因。
head(model_lasso_min$beta)
choose_gene_min=rownames(model_lasso_min$beta)[as.numeric(model_lasso_min$beta)!=0]
choose_gene_1se=rownames(model_lasso_1se$beta)[as.numeric(model_lasso_1se$beta)!=0]
length(choose_gene_min)
length(choose_gene_1se)
load("TCGA-COADcox_lr.Rdata")
for_cox = intersect(choose_gene_min,lr)
save(for_cox,choose_gene_min,file = "for_cox.Rdata")
3.模型预测和评估
3.1自己预测自己
newx参数是预测对象。输出结果lasso.prob是一个矩阵,第一列是min的预测结果,第二列是1se的预测结果,预测结果是概率,或者说百分比,不是绝对的0和1。
将每个样本的生死和预测结果放在一起,直接cbind即可。
lasso.prob <- predict(cv_fit, newx=x , s=c(cv_fit$lambda.min,cv_fit$lambda.1se) )
re=cbind(y ,lasso.prob)
head(re)
3.2 箱线图
对预测结果进行可视化。以实际的生死作为分组,画箱线图整体上查看预测结果。
re=as.data.frame(re)
colnames(re)=c('event','prob_min','prob_1se')
re$event=as.factor(re$event)
library(ggpubr)
p1 = ggboxplot(re, x = "event", y = "prob_min",
color = "event", palette = "jco",
add = "jitter")+ stat_compare_means()
p2 = ggboxplot(re, x = "event", y = "prob_1se",
color = "event", palette = "jco",
add = "jitter")+ stat_compare_means()
library(patchwork)
p1+p2
可以看到,真实结果是死(0)的样本,预测的值就小一点(靠近0),真实结果是活着(1)的样本,预测的值就大一点(靠近1),整体上趋势是对的,但不是完全准确,模型是可用的。
对比两个λ值构建的模型,差别不大,1se的预测值准确一点。
3.3 ROC曲线
计算AUC取值范围在0.5-1之间,越接近于1越好。可以根据预测结果绘制ROC曲线。
library(ROCR)
library(caret)
# 自己预测自己
#min
pred_min <- prediction(re[,2], re[,1])
auc_min = performance(pred_min,"auc")@y.values[[1]]
perf_min <- performance(pred_min,"tpr","fpr")
plot(perf_min,colorize=FALSE, col="blue")
lines(c(0,1),c(0,1),col = "gray", lty = 4 )
text(0.8,0.2, labels = paste0("AUC = ",round(auc_min,3)))
#1se
pred_1se <- prediction(re[,3], re[,1])
auc_1se = performance(pred_1se,"auc")@y.values[[1]]
perf_1se <- performance(pred_1se,"tpr","fpr")
plot(perf_1se,colorize=FALSE, col="red")
lines(c(0,1),c(0,1),col = "gray", lty = 4 )
text(0.8,0.2, labels = paste0("AUC = ",round(auc_1se,3)))
- 强迫症选项,想把两个模型画一起。
plot(perf_min,colorize=FALSE, col="blue")
plot(perf_1se,colorize=FALSE, col="red",add = T)
lines(c(0,1),c(0,1),col = "gray", lty = 4 )
text(0.8,0.3, labels = paste0("AUC = ",round(auc_min,3)),col = "blue")
text(0.8,0.2, labels = paste0("AUC = ",round(auc_1se,3)),col = "red")
-还想用ggplot2画的更好看一点
tpr_min = performance(pred_min,"tpr")@y.values[[1]]
tpr_1se = performance(pred_1se,"tpr")@y.values[[1]]
dat = data.frame(tpr_min = perf_min@y.values[[1]],
fpr_min = perf_min@x.values[[1]],
tpr_1se = perf_1se@y.values[[1]],
fpr_1se = perf_1se@x.values[[1]])
library(ggplot2)
ggplot() +
geom_line(data = dat,aes(x = fpr_min, y = tpr_min),color = "blue") +
geom_line(aes(x=c(0,1),y=c(0,1)),color = "grey")+
theme_bw()+
annotate("text",x = .75, y = .25,
label = paste("AUC of min = ",round(auc_min,2)),color = "blue")+
scale_x_continuous(name = "fpr")+
scale_y_continuous(name = "tpr")
ggplot() +
geom_line(data = dat,aes(x = fpr_min, y = tpr_min),color = "blue") +
geom_line(data = dat,aes(x = fpr_1se, y = tpr_1se),color = "red")+
geom_line(aes(x=c(0,1),y=c(0,1)),color = "grey")+
theme_bw()+
annotate("text",x = .75, y = .25,
label = paste("AUC of min = ",round(auc_min,2)),color = "blue")+
annotate("text",x = .75, y = .15,label = paste("AUC of 1se = ",round(auc_1se,2)),color = "red")+
scale_x_continuous(name = "fpr")+
scale_y_continuous(name = "tpr")
然后是cox-风险森林图
1.准备输入数据
load("TCGA-COADsur_model.Rdata")
load("for_cox.Rdata")
library(stringr)
2.挑选感兴趣的基因构建coxph模型
出自文章Integrated genomic analysis identifies subclasses and prognosis signatures of kidney cancer中,五个miRNA是miR-21,miR-143,miR-10b,miR-192,miR-183
将他们从表达矩阵中取出来,就得到了5个基因在522个肿瘤样本中的表达量,可作为列添加在meta表噶的后面,组成的数据框赋值给dat。
e=t(exprSet[for_cox,])
e=log2(e+1)
colnames(e)=str_replace(colnames(e),"-","_")
dat=cbind(meta,e)
dat$gender=factor(dat$gender)
dat$stage=factor(dat$stage)
colnames(dat)
用survival::coxph()函数构建模型
library(survival)
library(survminer)
#s=Surv(time, event) ~ gender + stage + age + RP5_884M6.1+RP11_148K1.12+RP11_108K3.2+RP1_79C4.4+AC004510.3
# s = as.formula(paste("Surv(time, event) ~ ",
# paste(c(colnames(meta)[c(7,8,6)],
# colnames(e)),
# collapse = "+")
# )
# )
#s=Surv(time, event) ~ RP5_884M6.1+RP11_148K1.12+RP11_108K3.2+RP1_79C4.4+AC004510.3
s = as.formula(paste("Surv(time, event) ~ ",paste(colnames(e),collapse = "+")))
model <- coxph(s, data = dat )
# 去掉不显著的基因
summary(model)$concordance
summary(model)
tmp = summary(model)$coefficients[,5]
re = names(tmp[tmp<0.05])
#s=Surv(time, event) ~ RP5_884M6.1+RP1_79C4.4+AC004510.3
s = as.formula(paste("Surv(time, event) ~ ",paste(re,collapse = "+")))
model <- coxph(s, data = dat )
summary(model)
3.模型可视化-森林图
options(scipen=1)
ggforest(model, data =dat,
main = "Hazard ratio",
cpositions = c(0.10, 0.22, 0.4),
fontsize = 1.0,
refLabel = "1", noDigits = 4)
4.模型预测
fp <- predict(model,type = "risk")
boxplot(fp)
library(Hmisc)
options(scipen=200)
with(dat,rcorr.cens(fp,Surv(time, event)))
# 若要找到最佳模型,我们可以进行变量选择,可以采用逐步回归法进行分析
这里只是举个栗子,自己预测自己的C-index是1-with(dat,rcorr.cens(fp,Surv(time, event)))[[1]]
,实战应该是拿另一个数据集来预测,或者将一个数据集分两半,一半构建模型,一半验证,可以使用机器学习的R包切割数据。
C-index用于计算生存分析中的COX模型预测值与真实之间的区分度(discrimination),也称为Harrell's concordanceindex。C-index在0.5-1之间。0.5为完全不一致,说明该模型没有预测作用,1为完全一致,说明该模型预测结果与实际完全一致。
5.划分高低风险并画生存分析图
names(fp) = rownames(dat)
ri = ifelse(fp<median(fp),"lowrisk","highrisk")
names(ri) = names(fp)
ri = factor(ri)
sfit <- survfit(Surv(time, event)~ri, data=meta)
ggsurvplot(sfit, conf.int=F, pval=TRUE)
ggsurvplot(sfit,palette = c("#E7B800", "#2E9FDF"),
risk.table =TRUE,pval =TRUE,
conf.int =TRUE,xlab ="Time in months",
ggtheme =theme_light(),
ncensor.plot = TRUE)
fp_dat=data.frame(patientid=1:length(fp),fp=as.numeric(sort(fp)))
sur_dat=data.frame(patientid=1:length(fp),
time=meta[names(sort(fp)),'time'] ,
event=meta[names(sort(fp )),'event'] )
sur_dat$event=ifelse(sur_dat$event==0,'alive','death')
sur_dat$event=factor(sur_dat$event,levels = c("death","alive"))
exp_dat=dat[names(sort(fp)),11:ncol(dat)]
###第一个图----
p1=ggplot(fp_dat,aes(x=patientid,y=fp))+geom_point()+theme_bw();p1
#第二个图
p2=ggplot(sur_dat,aes(x=patientid,y=time))+geom_point(aes(col=event))+theme_bw();p2
#第三个图
mycolors <- colorRampPalette(c("black", "green", "red"), bias = 1.2)(100)
tmp=t(scale(exp_dat[,re]))
tmp[tmp > 1] = 1
tmp[tmp < -1] = -1
#p3=pheatmap(tmp,col= mycolors,show_colnames = F,cluster_cols = T)
p3=pheatmap::pheatmap(tmp,
col= mycolors,
show_colnames = F,
cluster_cols = F)
#拼图实现三图联动
library(ggplotify)
plots = list(p1,p2,as.ggplot(as.grob(p3)))
library(gridExtra)
lay1 = rbind(c(rep(1,7),NA),
c(rep(2,7)),
c(rep(3,7))) #布局矩阵
grid.arrange(grobs = plots,
layout_matrix = lay1,
heigths = c(1, 2,3))
按照预测值划分高低风险,加上注释
fp_dat=data.frame(patientid=1:length(fp),
fp=as.numeric(sort(fp)),
ri= ri[order(fp)])
sur_dat=data.frame(patientid=1:length(fp),
time=meta[names(sort(fp)),'time'] ,
event=meta[names(sort(fp )),'event'] )
sur_dat$event=ifelse(sur_dat$event==0,'alive','death')
sur_dat$event=factor(sur_dat$event,levels = c("death","alive"))
exp_dat=dat[names(sort(fp)),11:ncol(dat)]
###第一个图----
p1=ggplot(fp_dat,aes(x=patientid,y=fp))+
geom_point(aes(color = ri))+
scale_color_manual(values = c("red","blue"))+
theme_bw();p1
#第二个图
p2=ggplot(sur_dat,aes(x=patientid,y=time))+
geom_point(aes(col=event))+
scale_color_manual(values = c("red","blue"))+
theme_bw();p2
#第三个图
mycolors <- colorRampPalette(c("black", "green", "red"), bias = 1.2)(100)
tmp=t(scale(exp_dat[,re]))
tmp[tmp > 1] = 1
tmp[tmp < -1] = -1
#p3=pheatmap(tmp,col= mycolors,show_colnames = F,cluster_cols = T)
annotation_col = data.frame(group = ri,
row.names = names(ri))
ann_colors = list(
group = c(lowrisk="blue", highrisk="red")
)
p3=pheatmap::pheatmap(tmp,
col= mycolors,
show_colnames = F,
cluster_cols = F,
annotation_col = annotation_col,
annotation_colors =ann_colors,
annotation_legend = F)
#拼图实现三图联动
library(ggplotify)
plots = list(p1,p2,as.ggplot(as.grob(p3)))
library(gridExtra)
lay1 = rbind(c(rep(1,7)),
c(rep(2,7)),
c(rep(3,7))) #布局矩阵
grid.arrange(grobs = plots,
layout_matrix = lay1,
heigths = c(1,2,3))
三图联动